These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1633178)

  • 41. Ascorbate reduction of horse heart cytochrome c. A zero-energy reduction reaction.
    Myer YP; Kumar S
    J Biol Chem; 1984 Jul; 259(13):8144-50. PubMed ID: 6330101
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Electron transfer in hemoproteins. III. Physico-chemical characteristics of autoxidation of sperm whale oxymyoglobin].
    Khristova PK; Atanasov BP
    Mol Biol (Mosk); 1980; 14(1):86-93. PubMed ID: 7231407
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The reversible reduction of horse metmyoglobin by the iron(II) complex of trans-1,2-diaminocyclohexane-N,N,N,n-tetraacetate.
    Cassatt JC; Marini CP; Bender JW
    Biochemistry; 1975 Dec; 14(25):5470-5. PubMed ID: 57
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetics and mechanisms of the oxidation of myoglobin by Fe(III) and Cu(II) complexes.
    Hegetschweiler K; Saltman P; Dalvit C; Wright PE
    Biochim Biophys Acta; 1987 Apr; 912(3):384-97. PubMed ID: 3567208
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Redox properties of engineered ruthenium myoglobin.
    Li CZ; Taniguchi I; Mulchandani A
    Bioelectrochemistry; 2009 Jun; 75(2):182-8. PubMed ID: 19427819
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Riboflavin photosensitized oxidation of myoglobin.
    Grippa JM; de Zawadzki A; Grossi AB; Skibsted LH; Cardoso DR
    J Agric Food Chem; 2014 Feb; 62(5):1153-8. PubMed ID: 24456528
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electron and hydrogen-atom self-exchange reactions of iron and cobalt coordination complexes.
    Yoder JC; Roth JP; Gussenhoven EM; Larsen AS; Mayer JM
    J Am Chem Soc; 2003 Mar; 125(9):2629-40. PubMed ID: 12603151
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogen atom transfer from iron(II)-tris[2,2'-bi(tetrahydropyrimidine)] to TEMPO: a negative enthalpy of activation predicted by the Marcus equation.
    Mader EA; Larsen AS; Mayer JM
    J Am Chem Soc; 2004 Jul; 126(26):8066-7. PubMed ID: 15225018
    [TBL] [Abstract][Full Text] [Related]  

  • 49. H NMR probes for inter-segmental hydrogen bonds in myoglobins.
    Yamamoto Y
    J Biochem; 1996 Jul; 120(1):126-32. PubMed ID: 8864854
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Myoglobin as an efficient electrocatalyst for nitromethane reduction.
    Boutros J; Bayachou M
    Inorg Chem; 2004 Jun; 43(13):3847-53. PubMed ID: 15206865
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fast events in protein folding: structural volume changes accompanying the early events in the N-->I transition of apomyoglobin induced by ultrafast pH jump.
    Abbruzzetti S; Crema E; Masino L; Vecli A; Viappiani C; Small JR; Libertini LJ; Small EW
    Biophys J; 2000 Jan; 78(1):405-15. PubMed ID: 10620304
    [TBL] [Abstract][Full Text] [Related]  

  • 52. How different oxidation states of crystalline myoglobin are influenced by X-rays.
    Hersleth HP; Andersson KK
    Biochim Biophys Acta; 2011 Jun; 1814(6):785-96. PubMed ID: 20691815
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced heme accessibility in horse heart mini-myoglobin: Insights from molecular modelling and reactivity studies.
    Polticelli F; Zobnina V; Ciaccio C; de Sanctis G; Ascenzi P; Coletta M
    Arch Biochem Biophys; 2015 Nov; 585():1-9. PubMed ID: 26363214
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineered metalloregulation of azide binding affinity and reduction potential of horse heart myoglobin.
    Hunter CL; Mauk AG
    Dalton Trans; 2013 Mar; 42(9):3151-5. PubMed ID: 23250011
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Fluorescence spectroscopic study of interaction between Fe-protoporphyrin in myoglobin and Cu(II) ions].
    Feng YY; Yang H; Gu XT; Jiang HJ; Lu TH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Jun; 23(3):532-4. PubMed ID: 12953534
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct electron-transfer of myoglobin within a new zwitterionic gemini surfactant film and its analytical application for H2O2 detection.
    Wang F; Hu S
    Colloids Surf B Biointerfaces; 2008 Jun; 63(2):262-8. PubMed ID: 18321683
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct electrochemistry and electrocatalysis of myoglobin immobilized on L-cysteine self-assembled gold electrode.
    Paulo Tde F; Diógenes IC; Abruña HD
    Langmuir; 2011 Mar; 27(5):2052-7. PubMed ID: 21244069
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An infrared study of 2H-bond variation in myoglobin revealed by high pressure.
    Le Tilly V; Sire O; Alpert B; Wong PT
    Eur J Biochem; 1992 May; 205(3):1061-5. PubMed ID: 1576990
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The photo-oxidation of horse heart cytochrome c and native cytochrome c2 by reaction centres from Rhodopseudomonas spheroides R26.
    Prince RC; Cogdell RJ; Crofts AR
    Biochim Biophys Acta; 1974 Apr; 347(1):1-13. PubMed ID: 4373062
    [No Abstract]   [Full Text] [Related]  

  • 60. Myoglobin oxidation in a model system as affected by nonheme iron and iron chelating agents.
    Allen KE; Cornforth DP
    J Agric Food Chem; 2006 Dec; 54(26):10134-40. PubMed ID: 17177551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.