These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16331908)

  • 1. Entrainment in a chemical oscillator chain with a pacemaker.
    Fukuda H; Tamari N; Morimura H; Kai S
    J Phys Chem A; 2005 Dec; 109(49):11250-4. PubMed ID: 16331908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of coherence in a population of diffusively coupled oscillators.
    Toth R; Taylor AF
    J Chem Phys; 2006 Dec; 125(22):224708. PubMed ID: 17176155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reentrant synchronization and pattern formation in pacemaker-entrained Kuramoto oscillators.
    Radicchi F; Meyer-Ortmanns H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026203. PubMed ID: 17025521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodic perturbation of chemical oscillators: entrainment and induced synchronization.
    Makki R; Muñuzuri AP; Perez-Mercader J
    Chemistry; 2014 Oct; 20(44):14213-7. PubMed ID: 25214439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase angle difference alters coupling relations of functionally distinct circadian oscillators revealed by rhythm splitting.
    Gorman MR; Steele NA
    J Biol Rhythms; 2006 Jun; 21(3):195-205. PubMed ID: 16731659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wave patterns in frequency-entrained oscillator lattices.
    Sträng JE; Ostborn P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056137. PubMed ID: 16383718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entrainment ranges of forced phase oscillators.
    Previte JP; Sheils N; Hoffman KA; Kiemel T; Tytell ED
    J Math Biol; 2011 Apr; 62(4):589-603. PubMed ID: 20502920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entrainment of coupled oscillators on regular networks by pacemakers.
    Radicchi F; Meyer-Ortmanns H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036218. PubMed ID: 16605642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traveling waves propagating through coupled microbeads in the Belousov-Zhabotinsky reaction.
    Kuze M; Kitahata H; Nakata S
    Phys Chem Chem Phys; 2021 Nov; 23(42):24175-24179. PubMed ID: 34673865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase and frequency entrainment in locally coupled phase oscillators with repulsive interactions.
    Giver M; Jabeen Z; Chakraborty B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046206. PubMed ID: 21599269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase transition to frequency entrainment in a long chain of pulse-coupled oscillators.
    Ostborn P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016105. PubMed ID: 12241424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method for determining a coupling function in coupled oscillators with application to Belousov-Zhabotinsky oscillators.
    Miyazaki J; Kinoshita S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056209. PubMed ID: 17279986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel modes of synchronization in star networks of coupled chemical oscillators.
    Mersing D; Tyler SA; Ponboonjaroenchai B; Tinsley MR; Showalter K
    Chaos; 2021 Sep; 31(9):093127. PubMed ID: 34598462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entrainment and stimulated emission of ultrasonic piezoelectric auto-oscillators.
    Weaver RL; Lobkis OI; Yamilov A
    J Acoust Soc Am; 2007 Dec; 122(6):3409-18. PubMed ID: 18247750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interacting stochastic oscillators.
    Zhang J; Yuan Z; Wang J; Zhou T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021101. PubMed ID: 18351981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental results on synchronization times and stable states in locally coupled light-controlled oscillators.
    Rubido N; Cabeza C; Martí AC; Ramírez Avila GM
    Philos Trans A Math Phys Eng Sci; 2009 Aug; 367(1901):3267-80. PubMed ID: 19620123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Noise in Coupling Strength and Natural Frequency within a Pacemaker Network; Consequences for Development of Intestinal Motor Patterns According to a Weakly Coupled Phase Oscillator Model.
    Parsons SP; Huizinga JD
    Front Neurosci; 2016; 10():19. PubMed ID: 26869875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microreactor and imaging platform for studying chemical oscillators.
    Guo D; Li Y; Zheng B
    J Phys Chem A; 2013 Aug; 117(30):6402-8. PubMed ID: 23819868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase transitions towards frequency entrainment in large oscillator lattices.
    Ostborn P; Aberg S; Ohlén G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):015104. PubMed ID: 12935187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic resonance on weakly paced scale-free networks.
    Perc M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036105. PubMed ID: 18851103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.