These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1633196)

  • 21. Molecular cloning, expression and catalytic activity of a human AKR7 member of the aldo-keto reductase superfamily: evidence that the major 2-carboxybenzaldehyde reductase from human liver is a homologue of rat aflatoxin B1-aldehyde reductase.
    Ireland LS; Harrison DJ; Neal GE; Hayes JD
    Biochem J; 1998 May; 332 ( Pt 1)(Pt 1):21-34. PubMed ID: 9576847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of recombinant YakC of Schizosaccharomyces pombe showing YakC defines a new family of aldo-keto reductases.
    Morita T; Huruta T; Ashiuchi M; Yagi T
    J Biochem; 2002 Oct; 132(4):635-41. PubMed ID: 12359080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enantioselective enzymatic reductions of sterically bulky aryl alkyl ketones catalyzed by a NADPH-dependent carbonyl reductase.
    Zhu D; Hua L
    J Org Chem; 2006 Dec; 71(25):9484-6. PubMed ID: 17137377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional characterization of D-galacturonic acid reductase, a key enzyme of the ascorbate biosynthesis pathway, from Euglena gracilis.
    Ishikawa T; Masumoto I; Iwasa N; Nishikawa H; Sawa Y; Shibata H; Nakamura A; Yabuta Y; Shigeoka S
    Biosci Biotechnol Biochem; 2006 Nov; 70(11):2720-6. PubMed ID: 17090924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A molecular modeling study on the enantioselectivity of aryl alkyl ketone reductions by a NADPH-dependent carbonyl reductase.
    Cundari TR; Dinescu A; Zhu D; Hua L
    J Mol Model; 2007 Jul; 13(6-7):685-90. PubMed ID: 17279371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a novel NADH-specific aldo-keto reductase using sequence and structural homologies.
    Di Luccio E; Elling RA; Wilson DK
    Biochem J; 2006 Nov; 400(1):105-14. PubMed ID: 16813561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification and characterization of NAD-dependent morphine 6-dehydrogenase from hamster liver cytosol, a new member of the aldo-keto reductase superfamily.
    Todaka T; Yamano S; Toki S
    Arch Biochem Biophys; 2000 Feb; 374(2):189-97. PubMed ID: 10666297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NADPH-dependent 5-keto-D-gluconate reductase is a part of the fungal pathway for D-glucuronate catabolism.
    Kuivanen J; Richard P
    FEBS Lett; 2018 Jan; 592(1):71-77. PubMed ID: 29265364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and properties of beef liver aldehyde reductase catalyzing the reduction of D-erythrose 4-phosphate.
    Terada T; Kohno T; Samejima T; Hosomi S; Mizoguchi T; Uehara K
    J Biochem; 1985 Jan; 97(1):79-87. PubMed ID: 3888976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and properties of human liver aldehyde reductases.
    Petrash JM; Srivastava SK
    Biochim Biophys Acta; 1982 Sep; 707(1):105-14. PubMed ID: 6753936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interrelationships among human aldo-keto reductases: immunochemical, kinetic and structural properties.
    Srivastava SK; Das B; Hair GA; Gracy RW; Awasthi S; Ansari NH; Petrash JM
    Biochim Biophys Acta; 1985 Jul; 840(3):334-43. PubMed ID: 3924115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolism of the obligatory aerobic yeast Rhodotorula gracilis. IV. Induction of an enzyme necessary for D-xylose catabolism.
    Höfer M; Betz A; Kotyk A
    Biochim Biophys Acta; 1971 Oct; 252(1):1-12. PubMed ID: 5168931
    [No Abstract]   [Full Text] [Related]  

  • 33. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase.
    Kratzer R; Wilson DK; Nidetzky B
    IUBMB Life; 2006 Sep; 58(9):499-507. PubMed ID: 17002977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative anatomy of the aldo-keto reductase superfamily.
    Jez JM; Bennett MJ; Schlegel BP; Lewis M; Penning TM
    Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):625-36. PubMed ID: 9307009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mouse AKR1E1 is an ortholog of pig liver NADPH dependent 1,5-anhydro-D-fructose reductase.
    Sakuma M; Kubota S
    Biosci Biotechnol Biochem; 2008 Mar; 72(3):872-6. PubMed ID: 18323634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic mechanism of sheep liver NADPH-dependent aldehyde reductase.
    De Jongh KS; Schofield PJ; Edwards MR
    Biochem J; 1987 Feb; 242(1):143-50. PubMed ID: 3593233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic synthesis of (+)- and (-)-bisdechlorogeodin with sulochrin oxidase from Penicillium frequentans and Oospora sulphurea-ochracea.
    Nordlöv H; Gatenbeck S
    Arch Microbiol; 1982 May; 131(3):208-11. PubMed ID: 7049104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.
    Mayr P; Nidetzky B
    Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterisation of genes encoding two novel members of the aldo-keto reductase superfamily.
    Dalrymple BP; Peters JM; Vuocolo T
    Biochem Int; 1992 Dec; 28(4):651-7. PubMed ID: 1482401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aldehyde reductase from Rhodotorula.
    Sheys GH; Hayashi JA; Doughty CC
    Methods Enzymol; 1975; 41():361-4. PubMed ID: 236459
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.