These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 16332022)

  • 1. Influence of H2 on the gas-phase decomposition of formic acid: a theoretical study.
    Hu SW; Wang XY; Chu TW; Liu XQ
    J Phys Chem A; 2005 Oct; 109(40):9129-40. PubMed ID: 16332022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational study on the kinetics and mechanisms for the unimolecular decomposition of formic and oxalic acids.
    Chang JG; Chen HT; Xu S; Lin MC
    J Phys Chem A; 2007 Jul; 111(29):6789-97. PubMed ID: 17388318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study on the reaction mechanism of the gas-phase H2/CO2/Ni(3D) system.
    Qin S; Hu C; Yang H; Su Z
    J Phys Chem A; 2005 Jul; 109(29):6498-502. PubMed ID: 16833994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal reactions of formaldehyde and formic acid: free-energy analysis of equilibrium.
    Matubayasi N; Nakahara M
    J Chem Phys; 2005 Feb; 122(7):074509. PubMed ID: 15743256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational study on the decomposition of formic acid catalyzed by (H2O)x, x = 0-3: comparison of the gas-phase and aqueous-phase results.
    Chen HT; Chang JG; Chen HL
    J Phys Chem A; 2008 Sep; 112(35):8093-9. PubMed ID: 18690674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formic acid catalyzed gas-phase reaction of H2O with SO3 and the reverse reaction: a theoretical study.
    Long B; Long ZW; Wang YB; Tan XF; Han YH; Long CY; Qin SJ; Zhang WJ
    Chemphyschem; 2012 Jan; 13(1):323-9. PubMed ID: 22095771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the potential catalytic role of electron capture in gas-phase condensation reactions: a theoretical exploratory study of the CH2O2 and CH3ON systems.
    Chevreau H; Gardebien F; Dézarnaud-Dandine C; Sevin A
    Chemphyschem; 2001 Oct; 2(10):583-90. PubMed ID: 23686875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H-Bonding of Formic Acid with Its Decomposition Products: A Matrix Isolation and Computational Study of the HCOOH/CO and HCOOH/CO₂ Complexes.
    Rozenberg M; Loewenschuss A; Nielsen CJ
    J Phys Chem A; 2015 Aug; 119(31):8497-502. PubMed ID: 26159036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights into the dissociation and decomposition of carbonic acid in water via the hydroxide route: an ab initio metadynamics study.
    Galib M; Hanna G
    J Phys Chem B; 2011 Dec; 115(50):15024-35. PubMed ID: 22053746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting Formic Acid Decomposition by a Graph-Theoretical Approach.
    Ida T; Nishida M; Hori Y
    J Phys Chem A; 2019 Nov; 123(44):9579-9586. PubMed ID: 31625743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and equilibrium study on formic acid decomposition in relation to the water-gas-shift reaction.
    Yasaka Y; Yoshida K; Wakai C; Matubayasi N; Nakahara M
    J Phys Chem A; 2006 Sep; 110(38):11082-90. PubMed ID: 16986841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation of carbonic acid: gas phase energetics and mechanism from ab initio metadynamics simulations.
    Kumar PP; Kalinichev AG; Kirkpatrick RJ
    J Chem Phys; 2007 May; 126(20):204315. PubMed ID: 17552770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New theoretical insight into the interactions and properties of formic acid: development of a quantum-based pair potential for formic acid.
    Roszak S; Gee RH; Balasubramanian K; Fried LE
    J Chem Phys; 2005 Oct; 123(14):144702. PubMed ID: 16238411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study on kinetics and mechanisms of unimolecular decomposition of succinic acid and its anhydride.
    Chen HT; Chang JG; Musaev DG; Lin MC
    J Phys Chem A; 2008 Jul; 112(29):6621-9. PubMed ID: 18582025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxy acid epoxidation of acyclic allylic alcohols. Competition between s-trans and s-cis peroxy acid conformers.
    Freccero M; Gandolfi R; Sarzi-Amadè M; Rastelli A
    J Org Chem; 2005 Nov; 70(23):9573-83. PubMed ID: 16268635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio cluster calculations on the electronic structure of oxygen vacancies at the polar ZnO(0001) surface and on the adsorption of H2, CO, and CO2 at these sites.
    Fink K
    Phys Chem Chem Phys; 2006 Apr; 8(13):1482-9. PubMed ID: 16633631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study on the mechanism of aqueous synthesis of formic acid catalyzed by [Ru3+]-EDTA complex.
    Chen ZN; Chan KY; Pulleri JK; Kong J; Hu H
    Inorg Chem; 2015 Feb; 54(4):1314-24. PubMed ID: 25646570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unimolecular decomposition of formic acid in the gas phase--on the ratio of the competing reaction channels.
    Saito K; Shiose T; Takahashi O; Hidaka Y; Aiba F; Tabayashi K
    J Phys Chem A; 2005 Jun; 109(24):5352-7. PubMed ID: 16839059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic and Kinetic Studies of the Reaction of CO+H(2)O and CO+O(2) and Decomposition of HCOOH on Au/H-Mordenite Catalysts.
    Mohamed MM; Ichikawa M
    J Colloid Interface Sci; 2000 Dec; 232(2):381-388. PubMed ID: 11097774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum chemical study of the mechanism of reaction between NH (X 3sigma-) and H2, H2O, and CO2 under combustion conditions.
    Mackie JC; Bacskay GB
    J Phys Chem A; 2005 Dec; 109(51):11967-74. PubMed ID: 16366650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.