These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 16332037)

  • 1. Polarized Raman confocal microscopy of single gallium nitride nanowires.
    Pauzauskie PJ; Talaga D; Seo K; Yang P; Lagugné-Labarthet F
    J Am Chem Soc; 2005 Dec; 127(49):17146-7. PubMed ID: 16332037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized Raman single nanowire microscopy.
    In J; Yoon I; Seo K; Park J; Choo J; Lee Y; Kim B
    Chemistry; 2011 Jan; 17(4):1304-9. PubMed ID: 21243698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of discrete and continuous motion in scanning probe microscopy monitored via confocal Raman microspectroscopy.
    Cherney DP; Winesett DA
    Appl Spectrosc; 2008 Jun; 62(6):617-23. PubMed ID: 18559148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanowires enabling signal-enhanced nanoscale Raman spectroscopy.
    Becker M; Sivakov V; Gösele U; Stelzner T; Andrä G; Reich HJ; Hoffmann S; Michler J; Christiansen SH
    Small; 2008 Apr; 4(4):398-404. PubMed ID: 18383193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal structure of multiphase zinc-blende wurtzite gallium nitride nanowires.
    Jacobs BW; Ayres VM; Crimp MA; McElroy K
    Nanotechnology; 2008 Oct; 19(40):405706. PubMed ID: 21832635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy.
    Lim SH; Caster AG; Nicolet O; Leone SR
    J Phys Chem B; 2006 Mar; 110(11):5196-204. PubMed ID: 16539448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy.
    Spirkoska D; Abstreiter G; Fontcuberta I Morral A
    Nanotechnology; 2008 Oct; 19(43):435704. PubMed ID: 21832708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-area highly-oriented SiC nanowire arrays: synthesis, Raman, and photoluminescence properties.
    Li Z; Zhang J; Meng A; Guo J
    J Phys Chem B; 2006 Nov; 110(45):22382-6. PubMed ID: 17091978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemistry at level of individual aerosol particle using multivariate curve resolution of confocal Raman image.
    Sobanska S; Falgayrac G; Laureyns J; Brémard C
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Aug; 64(5):1102-9. PubMed ID: 16488185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single nanowire on a film as an efficient SERS-active platform.
    Yoon I; Kang T; Choi W; Kim J; Yoo Y; Joo SW; Park QH; Ihee H; Kim B
    J Am Chem Soc; 2009 Jan; 131(2):758-62. PubMed ID: 19099471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolving radial composition gradients in polarized confocal raman spectra of individual 3C-SiC nanowires.
    Fréchette J; Carraro C
    J Am Chem Soc; 2006 Nov; 128(46):14774-5. PubMed ID: 17105265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties.
    Pan H; Liu B; Yi J; Poh C; Lim S; Ding J; Feng Y; Huan CH; Lin J
    J Phys Chem B; 2005 Mar; 109(8):3094-8. PubMed ID: 16851327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of single-crystalline ZnTe nanowire arrays.
    Li L; Yang Y; Huang X; Li G; Zhang L
    J Phys Chem B; 2005 Jun; 109(25):12394-8. PubMed ID: 16852533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy.
    Wang J; Li Q; Egerton RF
    Micron; 2007; 38(4):346-53. PubMed ID: 16938457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing graphene edges via Raman scattering.
    Gupta AK; Russin TJ; Gutiérrez HR; Eklund PC
    ACS Nano; 2009 Jan; 3(1):45-52. PubMed ID: 19206247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light profile microscopy based on Raman and wavelength resolved luminescence contrast.
    Power JF; Fu SW
    Appl Spectrosc; 2006 May; 60(5):503-15. PubMed ID: 16756701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple vapor-phase synthesis of single-crystalline ag nanowires and single-nanowire surface-enhanced Raman scattering.
    Mohanty P; Yoon I; Kang T; Seo K; Varadwaj KS; Choi W; Park QH; Ahn JP; Suh YD; Ihee H; Kim B
    J Am Chem Soc; 2007 Aug; 129(31):9576-7. PubMed ID: 17636918
    [No Abstract]   [Full Text] [Related]  

  • 18. Detecting phase transitions in phosphatidylcholine vesicles by Raman microscopy and self-modeling curve resolution.
    Fox CB; Uibel RH; Harris JM
    J Phys Chem B; 2007 Oct; 111(39):11428-36. PubMed ID: 17850068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed.
    Larson JM
    Cytometry A; 2006 Aug; 69(8):825-34. PubMed ID: 16969806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy.
    Gargas DJ; Toimil-Molares ME; Yang P
    J Am Chem Soc; 2009 Feb; 131(6):2125-7. PubMed ID: 19175311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.