BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16332062)

  • 1. Efficient homogeneous catalysis in the reduction of CO2 to CO.
    Laitar DS; Müller P; Sadighi JP
    J Am Chem Soc; 2005 Dec; 127(49):17196-7. PubMed ID: 16332062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density functional theory studies on the mechanism of the reduction of CO2 to CO catalyzed by copper(I) boryl complexes.
    Zhao H; Lin Z; Marder TB
    J Am Chem Soc; 2006 Dec; 128(49):15637-43. PubMed ID: 17147372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFT studies on the mechanism of the diboration of aldehydes catalyzed by copper(I) boryl complexes.
    Zhao H; Dang L; Marder TB; Lin Z
    J Am Chem Soc; 2008 Apr; 130(16):5586-94. PubMed ID: 18373345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic diboration of aldehydes via insertion into the copper-boron bond.
    Laitar DS; Tsui EY; Sadighi JP
    J Am Chem Soc; 2006 Aug; 128(34):11036-7. PubMed ID: 16925416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the mild functionalization of arenes by diboron reagents catalyzed by iridium complexes. Intermediacy and chemistry of bipyridine-ligated iridium trisboryl complexes.
    Boller TM; Murphy JM; Hapke M; Ishiyama T; Miyaura N; Hartwig JF
    J Am Chem Soc; 2005 Oct; 127(41):14263-78. PubMed ID: 16218621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-mediated reduction of CO2 with pinB-SiMe2Ph via CO2 insertion into a copper-silicon bond.
    Kleeberg C; Cheung MS; Lin Z; Marder TB
    J Am Chem Soc; 2011 Nov; 133(47):19060-3. PubMed ID: 22066547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry surrounding monomeric copper(I) methyl, phenyl, anilido, ethoxide, and phenoxide complexes supported by N-heterocyclic carbene ligands: reactivity consistent with both early and late transition metal systems.
    Goj LA; Blue ED; Delp SA; Gunnoe TB; Cundari TR; Pierpont AW; Petersen JL; Boyle PD
    Inorg Chem; 2006 Oct; 45(22):9032-45. PubMed ID: 17054364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of [Cu(NHC)2]X complexes: catalytic and mechanistic studies of hydrosilylation reactions.
    Díez-González S; Stevens ED; Scott NM; Petersen JL; Nolan SP
    Chemistry; 2008; 14(1):158-68. PubMed ID: 17999393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cleavage of X-H bonds (X = N, o, or C) by copper(I) alkyl complexes to form monomeric two-coordinate copper(I) systems.
    Goj LA; Blue ED; Munro-Leighton C; Gunnoe TB; Petersen JL
    Inorg Chem; 2005 Nov; 44(24):8647-9. PubMed ID: 16296815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syntheses and reactions of the bis-boryloxide O(Bpin)2(pin = O2C2Me4).
    Hawkeswood S; Stephan DW
    Dalton Trans; 2005 Jun; (12):2182-7. PubMed ID: 15957061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stoichiometric and catalytic reactivity of the N-heterocyclic carbene ruthenium hydride complexes [Ru(NHC)(L)(CO)HCl] and [Ru(NHC)(L)(CO)H(eta2-BH4)] (L=NHC, PPh3).
    Chantler VL; Chatwin SL; Jazzar RF; Mahon MF; Saker O; Whittlesey MK
    Dalton Trans; 2008 May; (19):2603-14. PubMed ID: 18443704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coinage metal amido and thiolate SNS complexes: consequences of catalyst speciation in Cu(I)-catalysed carbonyl hydroboration.
    Ataie S; Lohoar M; Mangin LP; Baker RT
    Chem Commun (Camb); 2023 Mar; 59(27):4044-4046. PubMed ID: 36928477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-markovnikov N-H and O-H additions to electron-deficient olefins catalyzed by well-defined Cu(I) anilido, ethoxide, and phenoxide systems.
    Munro-Leighton C; Blue ED; Gunnoe TB
    J Am Chem Soc; 2006 Feb; 128(5):1446-7. PubMed ID: 16448104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (IPr)Pd(acac)Cl: an easily synthesized, efficient, and versatile precatalyst for C-N and C-C bond formation.
    Marion N; Ecarnot EC; Navarro O; Amoroso D; Bell A; Nolan SP
    J Org Chem; 2006 May; 71(10):3816-21. PubMed ID: 16674054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a tridentate ligand on the structure, electronic structure, and reactivity of the copper(I) nitrite complex: role of the conserved three-histidine ligand environment of the type-2 copper site in copper-containing nitrite reductases.
    Kujime M; Izumi C; Tomura M; Hada M; Fujii H
    J Am Chem Soc; 2008 May; 130(19):6088-98. PubMed ID: 18412340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into Activation of Cobalt Pre-Catalysts for C(
    Obligacion JV; Zhong H; Chirik PJ
    Isr J Chem; 2017 Nov; 57(10-11):1032-1036. PubMed ID: 29456261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of versatile and silver-free protocols for gold(I) catalysis.
    Gaillard S; Bosson J; Ramón RS; Nun P; Slawin AM; Nolan SP
    Chemistry; 2010 Dec; 16(46):13729-40. PubMed ID: 20945445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diborane Reductions of CO
    See MS; Ríos P; Tilley TD
    Organometallics; 2024 May; 43(10):1180-1189. PubMed ID: 38817536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Masked Cuprous Hydride as a Catalyst for Carbonyl Hydrosilylation in Aqueous Solutions.
    Ritter F; Mukherjee D; Spaniol TP; Hoffmann A; Okuda J
    Angew Chem Int Ed Engl; 2019 Feb; 58(6):1818-1822. PubMed ID: 30536497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile reactivity of a rhodium(I) boryl complex towards ketones and imines.
    Kalläne SI; Braun T; Braun B; Mebs S
    Dalton Trans; 2014 May; 43(18):6786-801. PubMed ID: 24647920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.