BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16332065)

  • 1. O-GlcNAcase catalyzes cleavage of thioglycosides without general acid catalysis.
    Macauley MS; Stubbs KA; Vocadlo DJ
    J Am Chem Soc; 2005 Dec; 127(49):17202-3. PubMed ID: 16332065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing synergy between two catalytic strategies in the glycoside hydrolase O-GlcNAcase using multiple linear free energy relationships.
    Greig IR; Macauley MS; Williams IH; Vocadlo DJ
    J Am Chem Soc; 2009 Sep; 131(37):13415-22. PubMed ID: 19715310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Asp174 and Asp175 as the key catalytic residues of human O-GlcNAcase by functional analysis of site-directed mutants.
    Cetinbaş N; Macauley MS; Stubbs KA; Drapala R; Vocadlo DJ
    Biochemistry; 2006 Mar; 45(11):3835-44. PubMed ID: 16533067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thioglycoside hydrolysis catalyzed by beta-glucosidase.
    Shen H; Byers LD
    Biochem Biophys Res Commun; 2007 Oct; 362(3):717-20. PubMed ID: 17727815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors.
    Macauley MS; Whitworth GE; Debowski AW; Chin D; Vocadlo DJ
    J Biol Chem; 2005 Jul; 280(27):25313-22. PubMed ID: 15795231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme molecular mechanism as a starting point to design new inhibitors: a theoretical study of O-GlcNAcase.
    Lameira J; Alves CN; Tuñón I; Martí S; Moliner V
    J Phys Chem B; 2011 May; 115(20):6764-75. PubMed ID: 21542586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of PUGNAc and NAG-thiazoline as transition state analogues for human O-GlcNAcase: mechanistic and structural insights into inhibitor selectivity and transition state poise.
    Whitworth GE; Macauley MS; Stubbs KA; Dennis RJ; Taylor EJ; Davies GJ; Greig IR; Vocadlo DJ
    J Am Chem Soc; 2007 Jan; 129(3):635-44. PubMed ID: 17227027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic requirements for the efficient enzyme-catalyzed hydrolysis of thiosialosides.
    Narine AA; Watson JN; Bennet AJ
    Biochemistry; 2006 Aug; 45(30):9319-26. PubMed ID: 16866378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic characterization and inhibition of the nuclear variant of human O-GlcNAcase.
    Macauley MS; Vocadlo DJ
    Carbohydr Res; 2009 Jun; 344(9):1079-84. PubMed ID: 19423084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaving group assistance in the La3+-catalyzed cleavage of dimethyl (o-methoxycarbonyl)aryl phosphate triesters in methanol.
    Edwards DR; Liu CT; Garrett GE; Neverov AA; Brown RS
    J Am Chem Soc; 2009 Sep; 131(38):13738-48. PubMed ID: 19736937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalysis of the cleavage of uridine 3'-2,2,2-trichloroethylphosphate by a designed helix-loop-helix motif peptide.
    Razkin J; Nilsson H; Baltzer L
    J Am Chem Soc; 2007 Nov; 129(47):14752-8. PubMed ID: 17985898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four orders of magnitude rate increase in artificial enzyme-catalyzed aryl glycoside hydrolysis.
    Ortega-Caballero F; Bjerre J; Laustsen LS; Bols M
    J Org Chem; 2005 Sep; 70(18):7217-26. PubMed ID: 16122240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed comparative analysis of the catalytic mechanisms of beta-N-acetylglucosaminidases from families 3 and 20 of glycoside hydrolases.
    Vocadlo DJ; Withers SG
    Biochemistry; 2005 Sep; 44(38):12809-18. PubMed ID: 16171396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An activated sulfonylating agent that undergoes general base-catalyzed hydrolysis by amines in preference to aminolysis.
    Tsang WY; Ahmed N; Hemming K; Page MI
    J Org Chem; 2008 Jun; 73(12):4504-12. PubMed ID: 18479166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Streptozotocin inhibits O-GlcNAcase via the production of a transition state analog.
    Toleman C; Paterson AJ; Shin R; Kudlow JE
    Biochem Biophys Res Commun; 2006 Feb; 340(2):526-34. PubMed ID: 16376298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced complexity and catalytic efficiency in the hydrolysis of phosphate diesters by rationally designed helix-loop-helix motifs.
    Razkin J; Lindgren J; Nilsson H; Baltzer L
    Chembiochem; 2008 Aug; 9(12):1975-84. PubMed ID: 18600814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remarkable supramolecular catalysis of glycoside hydrolysis by a cyclodextrin cyanohydrin.
    Ortega-Caballero F; Rousseau C; Christensen B; Petersen TE; Bols M
    J Am Chem Soc; 2005 Mar; 127(10):3238-9. PubMed ID: 15755115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Location and characterization of the O-GlcNAcase active site.
    Toleman C; Paterson AJ; Kudlow JE
    Biochim Biophys Acta; 2006 May; 1760(5):829-39. PubMed ID: 16517082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the transition states of four glucoside hydrolyses with 13C kinetic isotope effects measured at natural abundance by NMR spectroscopy.
    Lee JK; Bain AD; Berti PJ
    J Am Chem Soc; 2004 Mar; 126(12):3769-76. PubMed ID: 15038730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.