BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 1633224)

  • 21. Osteocompatibility evaluation of poly(glycine ethyl ester-co-alanine ethyl ester)phosphazene with honeycomb-patterned surface topography.
    Duan S; Yang X; Mao J; Qi B; Cai Q; Shen H; Yang F; Deng X; Wang S
    J Biomed Mater Res A; 2013 Feb; 101(2):307-17. PubMed ID: 22733644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: Side group effects.
    Sethuraman S; Nair LS; El-Amin S; Nguyen MT; Singh A; Krogman N; Greish YE; Allcock HR; Brown PW; Laurencin CT
    Acta Biomater; 2010 Jun; 6(6):1931-7. PubMed ID: 20004751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and characterization of biodegradable peptide-based polymers prepared by microwave-assisted click chemistry.
    van Dijk M; Nollet ML; Weijers P; Dechesne AC; van Nostrum CF; Hennink WE; Rijkers DT; Liskamp RM
    Biomacromolecules; 2008 Oct; 9(10):2834-43. PubMed ID: 18817441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradable poly(terephthalate-co-phosphate)s: synthesis, characterization and drug-release properties.
    Mao HQ; Shipanova-Kadiyala I; Zhao Z; Dang W; Brown A; Leong KW
    J Biomater Sci Polym Ed; 2005; 16(2):135-61. PubMed ID: 15794482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A library of L-tyrosine-derived biodegradable polyarylates for potential biomaterial applications, part I: synthesis, characterization and accelerated hydrolytic degradation.
    Huang X; Shen CY; Chen JC; Li Q
    J Biomater Sci Polym Ed; 2009; 20(7-8):935-55. PubMed ID: 19454161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradable polymers derived from amino acids.
    Domb AJ
    Biomaterials; 1990 Nov; 11(9):686-9. PubMed ID: 2090303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, characterization, and in vitro cell culture viability of degradable poly(N-isopropylacrylamide-co-5,6-benzo-2-methylene-1,3-dioxepane)-based polymers and crosslinked gels.
    Siegwart DJ; Bencherif SA; Srinivasan A; Hollinger JO; Matyjaszewski K
    J Biomed Mater Res A; 2008 Nov; 87(2):345-58. PubMed ID: 18181103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biocompatibility of poly (DL-lactic acid/glycine) copolymers.
    Schakenraad JM; Dijkstra PJ
    Clin Mater; 1991; 7(3):253-69. PubMed ID: 10149137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent developments in biodegradable synthetic polymers.
    Gunatillake P; Mayadunne R; Adhikari R
    Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Mechanism Study on Effect of Biodegradable Amino Acid Ester-Substituted Polyphosphazenes in Stimulating Osteogenic Differentiation.
    Huang Z; Yang L; Hu X; Huang Y; Cai Q; Ao Y; Yang X
    Macromol Biosci; 2019 Jun; 19(6):e1800464. PubMed ID: 31050390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradable phosphazene polymers and blends for biomedical applications.
    Carenza M; Lora S; Fambri L
    Adv Exp Med Biol; 2004; 553():113-22. PubMed ID: 15503451
    [No Abstract]   [Full Text] [Related]  

  • 32. Novel polyphosphazene/poly(lactide-co-glycolide) blends: miscibility and degradation studies.
    Ibim SE; Ambrosio AM; Kwon MS; El-Amin SF; Allcock HR; Laurencin CT
    Biomaterials; 1997 Dec; 18(23):1565-9. PubMed ID: 9430340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyphosphazene Based Star-Branched and Dendritic Molecular Brushes.
    Henke H; Posch S; Brüggemann O; Teasdale I
    Macromol Rapid Commun; 2016 May; 37(9):769-74. PubMed ID: 27027404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior.
    Burkoth AK; Burdick J; Anseth KS
    J Biomed Mater Res; 2000 Sep; 51(3):352-9. PubMed ID: 10880076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly effective and slow-biodegradable network-type cationic gene delivery polymer: small library-like approach synthesis and characterization.
    Kim HJ; Kwon MS; Choi JS; Yang SM; Yoon JK; Kim K; Park JS
    Biomaterials; 2006 Apr; 27(10):2292-301. PubMed ID: 16313954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradable rosin-ester-caprolactone graft copolymers.
    Yao K; Wang J; Zhang W; Lee JS; Wang C; Chu F; He X; Tang C
    Biomacromolecules; 2011 Jun; 12(6):2171-7. PubMed ID: 21526864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of new poly(ether-urethane-urea)s based on amino acid cyclopeptide and PEG: study of their environmental degradation.
    Rafiemanzelat F; Fathollahi Zonouz A; Emtiazi G
    Amino Acids; 2013 Feb; 44(2):449-59. PubMed ID: 22833157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermoresponsive, hydrolytically degradable polymer micelles intended for radionuclide delivery.
    Hruby M; Konak C; Kucka J; Vetrik M; Filippov SK; Vetvicka D; Mackova H; Karlsson G; Edwards K; Rihova B; Ulbrich K
    Macromol Biosci; 2009 Oct; 9(10):1016-27. PubMed ID: 19554646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of absorbable poly(ortho esters) for use in surgical implants.
    Daniels AU; Andriano KP; Smutz WP; Chang MK; Heller J
    J Appl Biomater; 1994; 5(1):51-64. PubMed ID: 10146697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and characterization of novel poly[(organo)phosphazenes] with cell-adhesive side groups.
    Heyde M; Moens M; Van Vaeck L; Shakesheff KM; Davies MC; Schacht EH
    Biomacromolecules; 2007 May; 8(5):1436-45. PubMed ID: 17391003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.