BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 16332255)

  • 1. Genetic Interaction Motif Finding by expectation maximization--a novel statistical model for inferring gene modules from synthetic lethality.
    Qi Y; Ye P; Bader JS
    BMC Bioinformatics; 2005 Dec; 6():288. PubMed ID: 16332255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finding friends and enemies in an enemies-only network: a graph diffusion kernel for predicting novel genetic interactions and co-complex membership from yeast genetic interactions.
    Qi Y; Suhail Y; Lin YY; Boeke JD; Bader JS
    Genome Res; 2008 Dec; 18(12):1991-2004. PubMed ID: 18832443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene function prediction from synthetic lethality networks via ranking on demand.
    Lippert C; Ghahramani Z; Borgwardt KM
    Bioinformatics; 2010 Apr; 26(7):912-8. PubMed ID: 20154010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expectation-maximization algorithms for fuzzy assignment of genes to cellular pathways.
    Popescu L; Yona G
    Comput Syst Bioinformatics Conf; 2006; ():281-91. PubMed ID: 17369646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Annotating novel genes by integrating synthetic lethals and genomic information.
    Schöner D; Kalisch M; Leisner C; Meier L; Sohrmann M; Faty M; Barral Y; Peter M; Gruissem W; Bühlmann P
    BMC Syst Biol; 2008 Jan; 2():3. PubMed ID: 18194531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A correlated motif approach for finding short linear motifs from protein interaction networks.
    Tan SH; Hugo W; Sung WK; Ng SK
    BMC Bioinformatics; 2006 Nov; 7():502. PubMed ID: 17107624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative inference of dynamic regulatory pathways via microarray data.
    Chang WC; Li CW; Chen BS
    BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding and predicting synthetic lethal genetic interactions in Saccharomyces cerevisiae using domain genetic interactions.
    Li B; Cao W; Zhou J; Luo F
    BMC Syst Biol; 2011 May; 5():73. PubMed ID: 21586150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs.
    Seitzer P; Wilbanks EG; Larsen DJ; Facciotti MT
    BMC Bioinformatics; 2012 Nov; 13():317. PubMed ID: 23181585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commensurate distances and similar motifs in genetic congruence and protein interaction networks in yeast.
    Ye P; Peyser BD; Spencer FA; Bader JS
    BMC Bioinformatics; 2005 Nov; 6():270. PubMed ID: 16283923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping genetically compensatory pathways from synthetic lethal interactions in yeast.
    Ma X; Tarone AM; Li W
    PLoS One; 2008 Apr; 3(4):e1922. PubMed ID: 18398455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneously learning DNA motif along with its position and sequence rank preferences through expectation maximization algorithm.
    Zhang Z; Chang CW; Hugo W; Cheung E; Sung WK
    J Comput Biol; 2013 Mar; 20(3):237-48. PubMed ID: 23461573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved Gibbs sampling method for motif discovery via sequence weighting.
    Chen X; Jiang T
    Comput Syst Bioinformatics Conf; 2006; ():239-47. PubMed ID: 17369642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation.
    Measday V; Baetz K; Guzzo J; Yuen K; Kwok T; Sheikh B; Ding H; Ueta R; Hoac T; Cheng B; Pot I; Tong A; Yamaguchi-Iwai Y; Boone C; Hieter P; Andrews B
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13956-61. PubMed ID: 16172405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mining protein networks for synthetic genetic interactions.
    Paladugu SR; Zhao S; Ray A; Raval A
    BMC Bioinformatics; 2008 Oct; 9():426. PubMed ID: 18844977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised statistical discovery of spaced motifs in prokaryotic genomes.
    Tong H; Schliekelman P; Mrázek J
    BMC Genomics; 2017 Jan; 18(1):27. PubMed ID: 28056763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RSIR: regularized sliced inverse regression for motif discovery.
    Zhong W; Zeng P; Ma P; Liu JS; Zhu Y
    Bioinformatics; 2005 Nov; 21(22):4169-75. PubMed ID: 16166098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.
    Liu XS; Brutlag DL; Liu JS
    Nat Biotechnol; 2002 Aug; 20(8):835-9. PubMed ID: 12101404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional centrality: detecting lethality of proteins in protein interaction networks.
    Tew KL; Li XL; Tan SH
    Genome Inform; 2007; 19():166-77. PubMed ID: 18546514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.