These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16332537)

  • 1. A role for retinal brain-derived neurotrophic factor in ocular dominance plasticity.
    Mandolesi G; Menna E; Harauzov A; von Bartheld CS; Caleo M; Maffei L
    Curr Biol; 2005 Dec; 15(23):2119-24. PubMed ID: 16332537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex.
    Baroncelli L; Sale A; Viegi A; Maya Vetencourt JF; De Pasquale R; Baldini S; Maffei L
    Exp Neurol; 2010 Nov; 226(1):100-9. PubMed ID: 20713044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex.
    Mower GD; Caplan CJ; Christen WG; Duffy FH
    J Comp Neurol; 1985 May; 235(4):448-66. PubMed ID: 3998219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blockade of cyclic AMP-dependent protein kinase does not prevent the reverse ocular dominance shift in kitten visual cortex.
    Shimegi S; Fischer QS; Yang Y; Sato H; Daw NW
    J Neurophysiol; 2003 Dec; 90(6):4027-32. PubMed ID: 12944540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Callosal contribution to ocular dominance in rat primary visual cortex.
    Cerri C; Restani L; Caleo M
    Eur J Neurosci; 2010 Oct; 32(7):1163-9. PubMed ID: 20726891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lifelong learning: ocular dominance plasticity in mouse visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Curr Opin Neurobiol; 2006 Aug; 16(4):451-9. PubMed ID: 16837188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enriched environment during adolescence changes brain-derived neurotrophic factor and TrkB levels in the rat visual system but does not offer neuroprotection to retinal ganglion cells following axotomy.
    Franklin TB; Murphy JA; Myers TL; Clarke DB; Currie RW
    Brain Res; 2006 Jun; 1095(1):1-11. PubMed ID: 16730677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity.
    Chapman B; Jacobson MD; Reiter HO; Stryker MP
    Nature; 1986 Nov 13-19; 324(6093):154-6. PubMed ID: 3785380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prior experience enhances plasticity in adult visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Nat Neurosci; 2006 Jan; 9(1):127-32. PubMed ID: 16327785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a 14-day period of hindpaw sensory restriction on mRNA and protein levels of NGF and BDNF in the hindpaw primary somatosensory cortex.
    Dupont E; Canu MH; Stevens L; Falempin M
    Brain Res Mol Brain Res; 2005 Jan; 133(1):78-86. PubMed ID: 15661367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of neurotrophins on ocular dominance plasticity in developing and adult cat visual cortex.
    Galuske RA; Kim DS; Castrén E; Singer W
    Eur J Neurosci; 2000 Sep; 12(9):3315-30. PubMed ID: 10998115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition.
    Sale A; Maya Vetencourt JF; Medini P; Cenni MC; Baroncelli L; De Pasquale R; Maffei L
    Nat Neurosci; 2007 Jun; 10(6):679-81. PubMed ID: 17468749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus for rapid ocular dominance plasticity in visual cortex.
    Rittenhouse CD; Siegler BA; Voelker CC; Shouval HZ; Paradiso MA; Bear MF
    J Neurophysiol; 2006 May; 95(5):2947-50. PubMed ID: 16481452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between relative eye usage and ocular dominance shifts in cat visual cortex.
    Mower GD
    Brain Res Dev Brain Res; 2005 Jan; 154(1):147-51. PubMed ID: 15617764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct effect of electrical stimulation on induction of brain-derived neurotrophic factor from cultured retinal Müller cells.
    Sato T; Fujikado T; Lee TS; Tano Y
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4641-6. PubMed ID: 18539944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.