These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1633260)

  • 1. Interpretation of the X-ray scattering profiles of chromatin at various NaCl concentrations by a simple chain model.
    Fujiwara S
    Biophys Chem; 1992 May; 43(1):81-7. PubMed ID: 1633260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchrotron X-ray scattering study of chromatin condensation induced by monovalent salt: analysis of the small-angle scattering data.
    Fujiwara S; Inoko Y; Ueki T
    J Biochem; 1989 Jul; 106(1):119-25. PubMed ID: 2777743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.
    Williams SP; Langmore JP
    Biophys J; 1991 Mar; 59(3):606-18. PubMed ID: 2049522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition of chromatin from the "10 nm" lower order structure, to the "30 nm" higher order structure as followed by small angle X-ray scattering.
    Greulich KO; Wachtel E; Ausio J; Seger D; Eisenberg H
    J Mol Biol; 1987 Feb; 193(4):709-21. PubMed ID: 3612790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The superstructure of chromatin and its condensation mechanism. V. Effect of linker length, condensation by multivalent cations, solubility and electric dichroism properties.
    Koch MH; Sayers Z; Michon AM; Marquet R; Houssier C; Willführ J
    Eur Biophys J; 1988; 16(3):177-85. PubMed ID: 3191886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of chromatin with NaCl and MgCl2. Solubility and binding studies, transition to and characterization of the higher-order structure.
    Ausio J; Borochov N; Seger D; Eisenberg H
    J Mol Biol; 1984 Aug; 177(3):373-98. PubMed ID: 6471101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray small angle scattering study of chromatin as a function of fiber length.
    Maccioni E; Vergani L; Dembo A; Mascetti G; Nicolini C
    Mol Biol Rep; 1998 Mar; 25(2):73-86. PubMed ID: 9540068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length.
    Williams SP; Athey BD; Muglia LJ; Schappe RS; Gough AH; Langmore JP
    Biophys J; 1986 Jan; 49(1):233-48. PubMed ID: 3955173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin dynamics of unfolding and refolding controlled by the nucleosome repeat length and the linker and core histones.
    Kobori T; Iwamoto S; Takeyasu K; Ohtani T
    Biopolymers; 2007 Mar; 85(4):295-307. PubMed ID: 17211885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy.
    Bednar J; Horowitz RA; Dubochet J; Woodcock CL
    J Cell Biol; 1995 Dec; 131(6 Pt 1):1365-76. PubMed ID: 8522597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The superstructure of chromatin and its condensation mechanism. II. Theoretical analysis of the X-ray scattering patterns and model calculations.
    Bordas J; Perez-Grau L; Koch MH; Vega MC; Nave C
    Eur Biophys J; 1986; 13(3):175-85. PubMed ID: 3956446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt-dependent compaction of di- and trinucleosomes studied by small-angle neutron scattering.
    Hammermann M; Tóth K; Rodemer C; Waldeck W; May RP; Langowski J
    Biophys J; 2000 Jul; 79(1):584-94. PubMed ID: 10866982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling predicts the structure and dynamics of chromatin fiber.
    Beard DA; Schlick T
    Structure; 2001 Feb; 9(2):105-14. PubMed ID: 11250195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarized light scattering of nucleosomes and polynucleosomes--in situ and in vitro studies.
    Diaspro A; Bertolotto M; Vergani L; Nicolini C
    IEEE Trans Biomed Eng; 1991 Jul; 38(7):670-8. PubMed ID: 1879860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin structure revealed by X-ray scattering analysis and computational modeling.
    Maeshima K; Imai R; Hikima T; Joti Y
    Methods; 2014 Dec; 70(2-3):154-61. PubMed ID: 25168089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin.
    Thoma F; Koller T; Klug A
    J Cell Biol; 1979 Nov; 83(2 Pt 1):403-27. PubMed ID: 387806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of H1 in chromatin folding. A thermodynamic study of chromatin reconstitution by differential scanning calorimetry.
    Russo I; Barboro P; Alberti I; Parodi S; Balbi C; Allera C; Lazzarini G; Patrone E
    Biochemistry; 1995 Jan; 34(1):301-11. PubMed ID: 7819211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of chromatin higher-order structure from histone H5 and depleted chromatin.
    Graziano V; Gerchman SE; Ramakrishnan V
    J Mol Biol; 1988 Oct; 203(4):997-1007. PubMed ID: 3210247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The superstructure of chromatin and its condensation mechanism. III: Effect of monovalent and divalent cations X-ray solution scattering and hydrodynamic studies.
    Koch MH; Vega MC; Sayers Z; Michon AM
    Eur Biophys J; 1987; 14(5):307-19. PubMed ID: 3569164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organisation of subunits in chromatin.
    Carpenter BG; Baldwin JP; Bradbury EM; Ibel K
    Nucleic Acids Res; 1976 Jul; 3(7):1739-46. PubMed ID: 967672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.