BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 16332933)

  • 1. Comparative and evolutionary analysis of genes encoding small GTPases and their activating proteins in eukaryotic genomes.
    Jiang SY; Ramachandran S
    Physiol Genomics; 2006 Feb; 24(3):235-51. PubMed ID: 16332933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases.
    Albert S; Will E; Gallwitz D
    EMBO J; 1999 Oct; 18(19):5216-25. PubMed ID: 10508155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational model explains high activity and rapid cycling of Rho GTPases within protein complexes.
    Goryachev AB; Pokhilko AV
    PLoS Comput Biol; 2006 Dec; 2(12):e172. PubMed ID: 17140284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of prenylated small GTP-binding proteins in the regulation of osteoclast function.
    Coxon FP; Rogers MJ
    Calcif Tissue Int; 2003 Jan; 72(1):80-4. PubMed ID: 12370802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GAP control: regulating the regulators of small GTPases.
    Bernards A; Settleman J
    Trends Cell Biol; 2004 Jul; 14(7):377-85. PubMed ID: 15246431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila.
    Bernards A
    Biochim Biophys Acta; 2003 Mar; 1603(2):47-82. PubMed ID: 12618308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of small GTPases at epithelial cell-cell junctions.
    Citi S; Spadaro D; Schneider Y; Stutz J; Pulimeno P
    Mol Membr Biol; 2011; 28(7-8):427-44. PubMed ID: 21781017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RJL family of small GTPases is an ancient eukaryotic invention probably functionally associated with the flagellar apparatus.
    Elias M; Archibald JM
    Gene; 2009 Aug; 442(1-2):63-72. PubMed ID: 19393304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of the ERF gene family in Arabidopsis and rice.
    Nakano T; Suzuki K; Fujimura T; Shinshi H
    Plant Physiol; 2006 Feb; 140(2):411-32. PubMed ID: 16407444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans.
    Tsao CC; Chen YT; Lan CY
    Fungal Genet Biol; 2009 Feb; 46(2):126-36. PubMed ID: 19095072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The GAP1 family of GTPase-activating proteins: spatial and temporal regulators of small GTPase signalling.
    Yarwood S; Bouyoucef-Cherchalli D; Cullen PJ; Kupzig S
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):846-50. PubMed ID: 17052212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homologs of eukaryotic Ras superfamily proteins in prokaryotes and their novel phylogenetic correlation with their eukaryotic analogs.
    Dong JH; Wen JF; Tian HF
    Gene; 2007 Jul; 396(1):116-24. PubMed ID: 17449198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rho GTPase signaling in Dictyostelium discoideum: insights from the genome.
    Vlahou G; Rivero F
    Eur J Cell Biol; 2006 Sep; 85(9-10):947-59. PubMed ID: 16762450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time in vitro measurement of intrinsic and Ras GAP-mediated GTP hydrolysis.
    Shutes A; Der CJ
    Methods Enzymol; 2006; 407():9-22. PubMed ID: 16757310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence.
    Johnson DA; Thomas MA
    Mol Biol Evol; 2007 Nov; 24(11):2412-23. PubMed ID: 17827171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function.
    van Nocker S; Ludwig P
    BMC Genomics; 2003 Dec; 4(1):50. PubMed ID: 14672542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GEFs and GAPs: critical elements in the control of small G proteins.
    Bos JL; Rehmann H; Wittinghofer A
    Cell; 2007 Jun; 129(5):865-77. PubMed ID: 17540168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lineage-specific expansions provide genomic complexity among sea urchin GTPases.
    Beane WS; Voronina E; Wessel GM; McClay DR
    Dev Biol; 2006 Dec; 300(1):165-79. PubMed ID: 17014838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.