BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 16333164)

  • 1. Monte Carlo study of Siemens PRIMUS photoneutron production.
    Pena J; Franco L; Gómez F; Iglesias A; Pardo J; Pombar M
    Phys Med Biol; 2005 Dec; 50(24):5921-33. PubMed ID: 16333164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoneutron production of a Siemens Primus linear accelerator studied by Monte Carlo methods and a paired magnesium and boron coated magnesium ionization chamber system.
    Becker J; Brunckhorst E; Schmidt R
    Phys Med Biol; 2007 Nov; 52(21):6375-87. PubMed ID: 17951849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of automatic wedge filter on photoneutron and photon spectra of an 18-MV photon beam.
    Ghavami SM; Mesbahi A; Mohammadi E
    Radiat Prot Dosimetry; 2010 Feb; 138(2):123-8. PubMed ID: 19789200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutron dose equivalent and neutron spectra in tissue for clinical linacs operating at 15, 18 and 20 MV.
    Martínez-Ovalle SA; Barquero R; Gómez-Ros JM; Lallena AM
    Radiat Prot Dosimetry; 2011 Nov; 147(4):498-511. PubMed ID: 21233098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo estimation of photoneutrons contamination from high-energy X-ray medical accelerators in treatment room and maze: a simplified model.
    Zabihzadeh M; Ay MR; Allahverdi M; Mesbahi A; Mahdavi SR; Shahriari M
    Radiat Prot Dosimetry; 2009 Jul; 135(1):21-32. PubMed ID: 19483207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of field modifier blocks on the fast photoneutron dose equivalent from two high-energy medical linear accelerators.
    Hashemi SM; Hashemi-Malayeri B; Raisali G; Shokrani P; Sharafi AA; Jafarizadeh M
    Radiat Prot Dosimetry; 2008; 128(3):359-62. PubMed ID: 17875628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of scattered and thermal photoneutron fluences inside a radiotherapy room.
    Facure A; Da Silva AX; Falcão RC
    Radiat Prot Dosimetry; 2007; 123(1):56-61. PubMed ID: 16815885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the photoneutron field produced in a medical linear accelerator.
    Kim HS; Park YH; Koo BC; Kwon JW; Lee JS; Choi HS
    Radiat Prot Dosimetry; 2007; 123(3):323-8. PubMed ID: 17077093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Monte Carlo study on neutron and electron contamination of an unflattened 18-MV photon beam.
    Mesbahi A
    Appl Radiat Isot; 2009 Jan; 67(1):55-60. PubMed ID: 18760613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doses to patients from photoneutrons emitted in a medical linear accelerator.
    Saeed MK; Moustafa O; Yasin OA; Tuniz C; Habbani FI
    Radiat Prot Dosimetry; 2009 Feb; 133(3):130-5. PubMed ID: 19287045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoneutron contamination from an 18 MV Saturne medical linear accelerator in the treatment room.
    Khosravi M; Shahbazi-Gahrouei D; Jabbari K; Nasri-Nasrabadi M; Baradaran-Ghahfarokhi M; Siavashpour Z; Gheisari R; Amiri B
    Radiat Prot Dosimetry; 2013 Sep; 156(3):356-63. PubMed ID: 23538892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron spectra in a tissue equivalent phantom during photon radiotherapy treatment by LINACS.
    Zanini A; Durisi E; Fasolo F; Visca L; Ongaro C; Nastasi U; Burn KW; Annand JR
    Radiat Prot Dosimetry; 2004; 110(1-4):157-60. PubMed ID: 15353639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of large-field electron beams to variations in a Monte Carlo accelerator model.
    Schreiber EC; Faddegon BA
    Phys Med Biol; 2005 Mar; 50(5):769-78. PubMed ID: 15798253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of photoneutron yield in linear accelerator with different collimation systems by Geant4 and MCNPX simulation codes.
    Kim YS; Khazaei Z; Ko J; Afarideh H; Ghergherehchi M
    Phys Med Biol; 2016 Apr; 61(7):2762-79. PubMed ID: 26975304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutron dose calculation at the maze entrance of medical linear accelerator rooms.
    Falcão RC; Facure A; Silva AX
    Radiat Prot Dosimetry; 2007; 123(3):283-7. PubMed ID: 17005540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation of a medical linear accelerator for radiotherapy use.
    Serrano B; Hachem A; Franchisseur E; Hérault J; Marcié S; Costa A; Bensadoun RJ; Barthe J; Gérard JP
    Radiat Prot Dosimetry; 2006; 119(1-4):506-9. PubMed ID: 16644964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutron and photon spectra in LINACs.
    Vega-Carrillo HR; Martínez-Ovalle SA; Lallena AM; Mercado GA; Benites-Rengifo JL
    Appl Radiat Isot; 2012 Dec; 71 Suppl():75-80. PubMed ID: 22494894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Undesirable nuclear reactions and induced radioactivity as a result of the use of the high-energy therapeutic beams generated by medical linacs.
    Konefal A; Polaczek-Grelik K; Zipper W
    Radiat Prot Dosimetry; 2008; 128(2):133-45. PubMed ID: 17569692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a new IRSN thermal neutron field facility using Monte-Carlo simulations.
    Lacoste V
    Radiat Prot Dosimetry; 2007; 126(1-4):58-63. PubMed ID: 17578877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.