These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 16333344)
1. Numbers of fecal streptococci and Escherichia coli in fresh and dry cattle, horse, and sheep manure. Weaver RW; Entry JA; Graves A Can J Microbiol; 2005 Oct; 51(10):847-51. PubMed ID: 16333344 [TBL] [Abstract][Full Text] [Related]
2. Characterization of enterococci populations in livestock manure using BIOLOG. Graves A; Weaver RW; Entry J Microbiol Res; 2009; 164(3):260-6. PubMed ID: 17408940 [TBL] [Abstract][Full Text] [Related]
3. Use of in-stream reservoirs to reduce bacterial contamination of rural watersheds. Gannon VP; Duke GD; Thomas JE; Vanleeuwen J; Byrne J; Johnson D; Kienzle SW; Little J; Graham T; Selinger B Sci Total Environ; 2005 Sep; 348(1-3):19-31. PubMed ID: 16162311 [TBL] [Abstract][Full Text] [Related]
4. Survival of manure-borne E. coli in streambed sediment: effects of temperature and sediment properties. Garzio-Hadzick A; Shelton DR; Hill RL; Pachepsky YA; Guber AK; Rowland R Water Res; 2010 May; 44(9):2753-62. PubMed ID: 20219232 [TBL] [Abstract][Full Text] [Related]
5. Discriminant analysis of fecal bacterial species composition for use as a phenotypic microbial source tracking method. Evenson CJ; Strevett KA Res Microbiol; 2006 Jun; 157(5):437-44. PubMed ID: 16725314 [TBL] [Abstract][Full Text] [Related]
6. Concentrations of host-specific and generic fecal markers measured by quantitative PCR in raw sewage and fresh animal feces. Silkie SS; Nelson KL Water Res; 2009 Nov; 43(19):4860-71. PubMed ID: 19765792 [TBL] [Abstract][Full Text] [Related]
7. Assessment of equine fecal contamination: the search for alternative bacterial source-tracking targets. Simpson JM; Santo Domingo JW; Reasoner DJ FEMS Microbiol Ecol; 2004 Jan; 47(1):65-75. PubMed ID: 19712347 [TBL] [Abstract][Full Text] [Related]
8. Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. Jiang SC; Chu W; Olson BH; He JW; Choi S; Zhang J; Le JY; Gedalanga PB Appl Microbiol Biotechnol; 2007 Sep; 76(4):927-34. PubMed ID: 17589839 [TBL] [Abstract][Full Text] [Related]
9. Wildlife identified as major source of Escherichia coli in agriculturally dominated watersheds by BOX A1R-derived genetic fingerprints. Somarelli JA; Makarewicz JC; Sia R; Simon R J Environ Manage; 2007 Jan; 82(1):60-5. PubMed ID: 16551490 [TBL] [Abstract][Full Text] [Related]
10. Demonstration of methods to reduce E. coli runoff from dairy manure application sites. Meals DW; Braun DC J Environ Qual; 2006; 35(4):1088-100. PubMed ID: 16738394 [TBL] [Abstract][Full Text] [Related]
11. Genotypic diversity of Escherichia coli in a dairy farm. Son I; Van Kessel JA; Karns JS Foodborne Pathog Dis; 2009 Sep; 6(7):837-47. PubMed ID: 19459756 [TBL] [Abstract][Full Text] [Related]
12. Fate of Escherichia coli originating from livestock faeces deposited directly onto pasture. Avery SM; Moore A; Hutchison ML Lett Appl Microbiol; 2004; 38(5):355-9. PubMed ID: 15059203 [TBL] [Abstract][Full Text] [Related]
13. Determining the source of fecal contamination in recreational waters. Meyer KJ; Appletoft CM; Schwemm AK; Uzoigwe JC; Brown EJ J Environ Health; 2005; 68(1):25-30. PubMed ID: 16121484 [TBL] [Abstract][Full Text] [Related]
14. Semi-quantitative evaluation of fecal contamination potential by human and ruminant sources using multiple lines of evidence. Stoeckel DM; Stelzer EA; Stogner RW; Mau DP Water Res; 2011 May; 45(10):3225-44. PubMed ID: 21513966 [TBL] [Abstract][Full Text] [Related]
15. Examination of Salmonella and Escherichia coli translocation from hog manure to forage, soil, and cattle grazed on the hog manure-treated pasture. Holley R; Walkty J; Blank G; Tenuta M; Ominski K; Krause D; Ng LK J Environ Qual; 2008; 37(6):2083-92. PubMed ID: 18948461 [TBL] [Abstract][Full Text] [Related]
16. Identifying fecal sources in a selected catchment reach using multiple source-tracking tools. Vogel JR; Stoeckel DM; Lamendella R; Zelt RB; Santo Domingo JW; Walker SR; Oerther DB J Environ Qual; 2007; 36(3):718-29. PubMed ID: 17412907 [TBL] [Abstract][Full Text] [Related]
17. Choice of indicator organism and library size considerations for phenotypic microbial source tracking by FAME profiling. Duran M; Yurtsever D; Dunaev T Water Sci Technol; 2009; 60(10):2659-68. PubMed ID: 19923772 [TBL] [Abstract][Full Text] [Related]
18. Establishing relative release kinetics of faecal indicator organisms from different faecal matrices. Hodgson CJ; Bulmer N; Chadwick DR; Oliver DM; Heathwaite AL; Fish RD; Winter M Lett Appl Microbiol; 2009 Jul; 49(1):124-30. PubMed ID: 19422475 [TBL] [Abstract][Full Text] [Related]
19. Prevalence of shiga toxin-encoding bacteria and shiga toxin-producing Escherichia coli isolates from dairy farms and county fairs. Cho S; Diez-Gonzalez F; Fossler CP; Wells SJ; Hedberg CW; Kaneene JB; Ruegg PL; Warnick LD; Bender JB Vet Microbiol; 2006 Dec; 118(3-4):289-98. PubMed ID: 16959442 [TBL] [Abstract][Full Text] [Related]
20. Evaluating the prevalence and genetic diversity of adenovirus and polyomavirus in bovine waste for microbial source tracking. Wong K; Xagoraraki I Appl Microbiol Biotechnol; 2011 May; 90(4):1521-6. PubMed ID: 21394527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]