These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16333516)

  • 1. Enantioselective hydrogenation of polar substrates in inverted supercritical CO2/aqueous biphasic media.
    Burgemeister K; Franciò G; Hugl H; Leitner W
    Chem Commun (Camb); 2005 Dec; (48):6026-8. PubMed ID: 16333516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverted supercritical carbon dioxide/aqueous biphasic media for rhodium-catalyzed hydrogenation reactions.
    Burgemeister K; Franciò G; Gego VH; Greiner L; Hugl H; Leitner W
    Chemistry; 2007; 13(10):2798-804. PubMed ID: 17295365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective hydrogenation of imines in ionic liquid/carbon dioxide media.
    Solinas M; Pfaltz A; Cozzi PG; Leitner W
    J Am Chem Soc; 2004 Dec; 126(49):16142-7. PubMed ID: 15584750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid poly(ethylene glycol) and supercritical carbon dioxide: a benign biphasic solvent system for use and recycling of homogeneous catalysts.
    Heldebrant DJ; Jessop PG
    J Am Chem Soc; 2003 May; 125(19):5600-1. PubMed ID: 12733876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemoselective hydrogenation of substituted nitroaromatics using novel water-soluble iron complex catalysts.
    Deshpande RM; Mahajan AN; Diwakar MM; Ozarde PS; Chaudhari RV
    J Org Chem; 2004 Jul; 69(14):4835-8. PubMed ID: 15230611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swelled plastics in supercritical CO2 as media for stabilization of metal nanoparticles and for catalytic hydrogenation.
    Ohde H; Ohde M; Wai CM
    Chem Commun (Camb); 2004 Apr; (8):930-1. PubMed ID: 15069480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile ruthenium precursor for biphasic catalysis and its application in ionic liquid biphasic transfer hydrogenation: conventional vs task-specific catalysts.
    Geldbach TJ; Dyson PJ
    J Am Chem Soc; 2004 Jul; 126(26):8114-5. PubMed ID: 15225042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic enantioselective synthesis of chiral phthalides by efficient reductive cyclization of 2-acylarylcarboxylates under aqueous transfer hydrogenation conditions.
    Zhang B; Xu MH; Lin GQ
    Org Lett; 2009 Oct; 11(20):4712-5. PubMed ID: 19810768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercritical carbon dioxide: an inert solvent for catalytic hydrogenation?
    Burgener M; Ferri D; Grunwaldt JD; Mallat T; Baiker A
    J Phys Chem B; 2005 Sep; 109(35):16794-800. PubMed ID: 16853138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iridium phosphite-oxazoline catalysts for the highly enantioselective hydrogenation of terminal alkenes.
    Mazuela J; Verendel JJ; Coll M; Schäffner B; Börner A; Andersson PG; Pàmies O; Diéguez M
    J Am Chem Soc; 2009 Sep; 131(34):12344-53. PubMed ID: 19658416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-supported chiral catalysts for heterogeneous enantioselective reactions.
    Ding K; Wang Z; Wang X; Liang Y; Wang X
    Chemistry; 2006 Jul; 12(20):5188-97. PubMed ID: 16568490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous hydrogenation of carbon dioxide catalysed by water-soluble ruthenium aqua complexes under acidic conditions.
    Hayashi H; Ogo S; Fukuzumi S
    Chem Commun (Camb); 2004 Dec; (23):2714-5. PubMed ID: 15568081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled reverse micelles in supercritical CO2 entrap protein in native state.
    Chaitanya VS; Senapati S
    J Am Chem Soc; 2008 Feb; 130(6):1866-70. PubMed ID: 18198866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogenation of olefins in supercritical CO(2) catalyzed by palladium nanoparticles in a water-in-CO(2) microemulsion.
    Ohde H; Wai CM; Kim H; Kim J; Ohde M
    J Am Chem Soc; 2002 May; 124(17):4540-1. PubMed ID: 11971683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium nanoparticles stabilized by alkylated polyethyleneimine as aqueous biphasic catalysts for the chemoselective stereocontrolled hydrogenation of alkenes.
    Vasylyev MV; Maayan G; Hovav Y; Haimov A; Neumann R
    Org Lett; 2006 Nov; 8(24):5445-8. PubMed ID: 17107043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and self-assembly of surfactant/supercritical CO2 systems in confined pores: a molecular dynamics simulation.
    Xu Z; Yang X; Yang Z
    Langmuir; 2007 Aug; 23(18):9201-12. PubMed ID: 17676777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of effective zeolite catalysts for the complete hydrogenation of CO2.
    Chan B; Radom L
    J Am Chem Soc; 2006 Apr; 128(16):5322-3. PubMed ID: 16620086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly enantioselective reductive cyclization of acetylenic aldehydes via rhodium catalyzed asymmetric hydrogenation.
    Rhee JU; Krische MJ
    J Am Chem Soc; 2006 Aug; 128(33):10674-5. PubMed ID: 16910650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric transfer hydrogenation catalysed by hydrophobic dendritic DACH-rhodium complex in water.
    Jiang L; Wu TF; Chen YC; Zhu J; Deng JG
    Org Biomol Chem; 2006 Sep; 4(17):3319-24. PubMed ID: 17036121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalysis in supercritical CO2 using dendrimer-encapsulated palladium nanoparticles.
    Yeung LK; Lee CT; Johnston KP; Crooks RM
    Chem Commun (Camb); 2001 Nov; (21):2290-1. PubMed ID: 12240155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.