BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 16333615)

  • 1. A site-directed integration system for the nonuniversal CUG(Ser) codon usage species Pichia farinosa by electroporation.
    Wang X; Li G; Deng Y; Yu X; Chen F
    Arch Microbiol; 2006 Feb; 184(6):419-24. PubMed ID: 16333615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative CUG codon usage (Ser for Leu) in Pichia farinosa and the effect of a mutated killer gene in Saccharomyces cerevisiae.
    Suzuki C; Kashiwagi T; Hirayama K
    Protein Eng; 2002 Mar; 15(3):251-5. PubMed ID: 11932496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol.
    Wu S; Letchworth GJ
    Biotechniques; 2004 Jan; 36(1):152-4. PubMed ID: 14740498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a transformation system for gene knock-out in the flavinogenic yeast Pichia guilliermondii.
    Boretsky YR; Pynyaha YV; Boretsky VY; Kutsyaba VI; Protchenko OV; Philpott CC; Sibirny AA
    J Microbiol Methods; 2007 Jul; 70(1):13-9. PubMed ID: 17467833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transformation system for the nonuniversal CUG(Ser) codon usage species Candida rugosa.
    Tang SJ; Sun KH; Sun GH; Chang TY; Wu WL; Lee GC
    J Microbiol Methods; 2003 Feb; 52(2):231-8. PubMed ID: 12459243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of GFP using Pichia pastoris vectors with zeocin or G-418 sulphate as the primary selectable marker.
    Papakonstantinou T; Harris S; Hearn MT
    Yeast; 2009 Jun; 26(6):311-21. PubMed ID: 19399907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posttransformational vector amplification in the yeast Pichia pastoris.
    Sunga AJ; Tolstorukov I; Cregg JM
    FEMS Yeast Res; 2008 Sep; 8(6):870-6. PubMed ID: 18637138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and chromosomal mapping of URA3 genes of Pichia farinosa and P. sorbitophila encoding orotidine-5'-phosphate decarboxylase.
    Suzuki C; Yoshida N; Okano E; Kawasumi T; Kashiwagi Y
    Yeast; 2003 Jul; 20(10):905-12. PubMed ID: 12868059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Codon optimization of Candida rugosa lip1 gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase.
    Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Feb; 54(3):815-22. PubMed ID: 16448188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tools for genetic engineering of the yeast Hansenula polymorpha.
    Saraya R; Gidijala L; Veenhuis M; van der Klei IJ
    Methods Mol Biol; 2014; 1152():43-62. PubMed ID: 24744026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-level expression and immunogenicity of a porcine circovirus type 2 capsid protein through codon optimization in Pichia pastoris.
    Tu Y; Wang Y; Wang G; Wu J; Liu Y; Wang S; Jiang C; Cai X
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):2867-75. PubMed ID: 23143467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production.
    Daly R; Hearn MT
    J Mol Recognit; 2005; 18(2):119-38. PubMed ID: 15565717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression.
    Scorer CA; Clare JJ; McCombie WR; Romanos MA; Sreekrishna K
    Biotechnology (N Y); 1994 Feb; 12(2):181-4. PubMed ID: 7764433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High level expression of a recombinant acid phytase gene in Pichia pastoris.
    Xiong AS; Yao QH; Peng RH; Han PL; Cheng ZM; Li Y
    J Appl Microbiol; 2005; 98(2):418-28. PubMed ID: 15659196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional expression of amyloidogenic human stefins A and B in Pichia pastoris using codon optimization.
    Nakamura K; Maeda Y; Morimoto K; Katayama S; Kondo K; Nakamura S
    Biotechnol Appl Biochem; 2013; 60(3):283-8. PubMed ID: 23656633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving recombinant eukaryotic membrane protein yields in Pichia pastoris: the importance of codon optimization and clone selection.
    Öberg F; Sjöhamn J; Conner MT; Bill RM; Hedfalk K
    Mol Membr Biol; 2011 Sep; 28(6):398-411. PubMed ID: 21770695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient production of active recombinant Candida rugosa LIP3 lipase in Pichia pastoris and biochemical characterization of the purified enzyme.
    Chang SW; Lee GC; Shaw JF
    J Agric Food Chem; 2006 Aug; 54(16):5831-8. PubMed ID: 16881684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Technical improvements in genetic manipulation of Pichia pastoris and their application in hirudin expression].
    Cai CQ; Fang RX
    Sheng Wu Gong Cheng Xue Bao; 2001 Mar; 17(2):155-60. PubMed ID: 11411222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of codon optimization on expression levels of human cystatin C in Pichia pastoris.
    Li YM; Li DJ; Xu XJ; Cui M; Zhen HH; Wang Q
    Genet Mol Res; 2014 Jul; 13(3):4990-5000. PubMed ID: 25062487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.