These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 16333683)

  • 1. Role of intra-abdominal pressure in the unloading and stabilization of the human spine during static lifting tasks.
    Arjmand N; Shirazi-Adl A
    Eur Spine J; 2006 Aug; 15(8):1265-75. PubMed ID: 16333683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel approach to evaluate abdominal coactivities for optimal spinal stability and compression force in lifting.
    El Ouaaid Z; Arjmand N; Shirazi-Adl A; Parnianpour M
    Comput Methods Biomech Biomed Engin; 2009 Dec; 12(6):735-45. PubMed ID: 19412827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks.
    Arjmand N; Shirazi-Adl A; Bazrgari B
    Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):668-75. PubMed ID: 16678948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embodiment of intra-abdominal pressure in a flexible multibody model of the trunk and the spinal unloading effects during static lifting tasks.
    Guo J; Guo W; Ren G
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1599-1626. PubMed ID: 34050846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative efficiency of abdominal muscles in spine stability.
    Arjmand N; Shirazi-Adl A; Parnianpour M
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):291-9. PubMed ID: 18568826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions.
    Arjmand N; Shirazi-Adl A
    J Biomech; 2006; 39(3):510-21. PubMed ID: 16389091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle activity, internal loads, and stability of the human spine in standing postures: combined model and in vivo studies.
    El-Rich M; Shirazi-Adl A; Arjmand N
    Spine (Phila Pa 1976); 2004 Dec; 29(23):2633-42. PubMed ID: 15564912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of changes in lumbar posture in static lifting.
    Arjmand N; Shirazi-Adl A
    Spine (Phila Pa 1976); 2005 Dec; 30(23):2637-48. PubMed ID: 16319750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postural effects on intra-abdominal pressure during Valsalva maneuver.
    Goldish GD; Quast JE; Blow JJ; Kuskowski MA
    Arch Phys Med Rehabil; 1994 Mar; 75(3):324-7. PubMed ID: 8129587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra-abdominal pressure and trunk muscle activity during lifting. IV. The causal factors of the intra-abdominal pressure rise.
    Hemborg B; Moritz U; Löwing H
    Scand J Rehabil Med; 1985; 17(1):25-38. PubMed ID: 3159082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a stiff lifting belt on spine compression during lifting.
    Kingma I; Faber GS; Suwarganda EK; Bruijnen TB; Peters RJ; van Dieën JH
    Spine (Phila Pa 1976); 2006 Oct; 31(22):E833-9. PubMed ID: 17047531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of variation in external pulling force magnitude, elevation, and orientation on trunk muscle forces, spinal loads and stability.
    El Ouaaid Z; Shirazi-Adl A; Plamondon A
    J Biomech; 2016 Apr; 49(6):946-952. PubMed ID: 26475220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating stability of human spine in static tasks: a combined
    Ghezelbash F; Shahvarpour A; Larivière C; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2022 Aug; 25(10):1156-1168. PubMed ID: 34839772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of lumbar spine rhythms and intra-abdominal pressure on spinal loads and trunk muscle forces during upper body inclination.
    Arshad R; Zander T; Dreischarf M; Schmidt H
    Med Eng Phys; 2016 Apr; 38(4):333-8. PubMed ID: 26922676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra-abdominal pressure increases during exhausting back extension in humans.
    Essendrop M; Schibye B; Hye-Knudsen C
    Eur J Appl Physiol; 2002 Jun; 87(2):167-73. PubMed ID: 12070628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled objective function to study the role of abdominal muscle forces in lifting using the kinematics-driven model.
    El Ouaaid Z; Shirazi-Adl A; Arjmand N; Plamondon A
    Comput Methods Biomech Biomed Engin; 2013; 16(1):54-65. PubMed ID: 21933037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of an abdominal belt on trunk muscle activity and intra-abdominal pressure during squat lifts.
    McGill SM; Norman RW; Sharratt MT
    Ergonomics; 1990 Feb; 33(2):147-60. PubMed ID: 2141312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra-abdominal pressure and activation of abdominal muscles in highly trained participants during sudden heavy trunk loadings.
    Essendrop M; Schibye B
    Spine (Phila Pa 1976); 2004 Nov; 29(21):2445-51. PubMed ID: 15507809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of trunk muscle coactivity on dynamic spinal loads.
    Granata KP; Marras WS
    Spine (Phila Pa 1976); 1995 Apr; 20(8):913-9. PubMed ID: 7644956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.