These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 16333683)

  • 21. Trunk response and stability in standing under sagittal-symmetric pull-push forces at different orientations, elevations and magnitudes.
    El Ouaaid Z; Shirazi-Adl A; Plamondon A
    J Biomech; 2018 Mar; 70():166-174. PubMed ID: 29089111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads.
    Bazrgari B; Shirazi-Adl A; Arjmand N
    Eur Spine J; 2007 May; 16(5):687-99. PubMed ID: 17103232
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Can increased intra-abdominal pressure in humans be decoupled from trunk muscle co-contraction during steady state isometric exertions?
    Cholewicki J; Ivancic PC; Radebold A
    Eur J Appl Physiol; 2002 Jun; 87(2):127-33. PubMed ID: 12070622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intra-abdominal pressure mechanism for stabilizing the lumbar spine.
    Cholewicki J; Juluru K; McGill SM
    J Biomech; 1999 Jan; 32(1):13-7. PubMed ID: 10050947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reproducibility of intra-abdominal pressure when lifting.
    Mairiaux P; Malchaire J; Vandiepenbeeck D; Bellelahom L
    Scand J Rehabil Med; 1988; 20(2):83-8. PubMed ID: 3406683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intra-abdominal pressure and abdominal wall muscular function: Spinal unloading mechanism.
    Stokes IA; Gardner-Morse MG; Henry SM
    Clin Biomech (Bristol, Avon); 2010 Nov; 25(9):859-66. PubMed ID: 20655636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trunk biomechanics during maximum isometric axial torque exertions in upright standing.
    Arjmand N; Shirazi-Adl A; Parnianpour M
    Clin Biomech (Bristol, Avon); 2008 Oct; 23(8):969-78. PubMed ID: 18513843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models.
    Gholipour A; Arjmand N
    J Biomech; 2016 Sep; 49(13):2946-2952. PubMed ID: 27452877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spinal stability and role of passive stiffness in dynamic squat and stoop lifts.
    Bazrgari B; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):351-60. PubMed ID: 17852177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Postural and trunk muscle response to sudden release during stoop lifting tasks before and after fatigue of the trunk erector muscles.
    Chow DH; Man JW; Holmes AD; Evans JH
    Ergonomics; 2004 May; 47(6):607-24. PubMed ID: 15204290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Abdominal bracing during lifting alters trunk muscle activity and body kinematics.
    Coenen P; Campbell A; Kemp-Smith K; O'Sullivan P; Straker L
    Appl Ergon; 2017 Sep; 63():91-98. PubMed ID: 28502411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increase in spinal stability obtained at levels of intra-abdominal pressure and back muscle activity realistic to work situations.
    Essendrop M; Andersen TB; Schibye B
    Appl Ergon; 2002 Sep; 33(5):471-6. PubMed ID: 12236656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coordination Between Trunk Muscles, Thoracolumbar Fascia, and Intra-Abdominal Pressure Toward Static Spine Stability.
    Bojairami IE; Driscoll M
    Spine (Phila Pa 1976); 2022 May; 47(9):E423-E431. PubMed ID: 34545044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seated whole body vibrations with high-magnitude accelerations--relative roles of inertia and muscle forces.
    Bazrgari B; Shirazi-Adl A; Kasra M
    J Biomech; 2008 Aug; 41(12):2639-46. PubMed ID: 18672242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Abdominal muscle activation increases lumbar spinal stability: analysis of contributions of different muscle groups.
    Stokes IA; Gardner-Morse MG; Henry SM
    Clin Biomech (Bristol, Avon); 2011 Oct; 26(8):797-803. PubMed ID: 21571410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical Investigation of Intra-abdominal Pressure Effects on Spinal Loads and Load-Sharing in Forward Flexion.
    Liu T; Khalaf K; Adeeb S; El-Rich M
    Front Bioeng Biotechnol; 2019; 7():428. PubMed ID: 31921829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intra-abdominal Pressure and Trunk Muscular Activities during Abdominal Bracing and Hollowing.
    Tayashiki K; Takai Y; Maeo S; Kanehisa H
    Int J Sports Med; 2016 Feb; 37(2):134-43. PubMed ID: 26509386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of posture on dynamic back loading during a cable lifting task.
    Gallagher S; Marras WS; Davis KG; Kovacs K
    Ergonomics; 2002 Apr; 45(5):380-98. PubMed ID: 12028722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of intra-abdominal pressure in spinal unloading.
    Daggfeldt K; Thorstensson A
    J Biomech; 1997; 30(11-12):1149-55. PubMed ID: 9456383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical investigation of intra-abdominal pressure and spinal load-sharing upon the application of an abdominal belt.
    Bernier E; Driscoll M
    J Biomech; 2023 Dec; 161():111863. PubMed ID: 37977959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.