BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16333864)

  • 1. Contrasting secretory processing of simultaneously expressed heterologous proteins in Saccharomyces cerevisiae.
    Rakestraw A; Wittrup KD
    Biotechnol Bioeng; 2006 Apr; 93(5):896-905. PubMed ID: 16333864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae.
    Kauffman KJ; Pridgen EM; Doyle FJ; Dhurjati PS; Robinson AS
    Biotechnol Prog; 2002; 18(5):942-50. PubMed ID: 12363344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments.
    Shusta EV; Raines RT; Plückthun A; Wittrup KD
    Nat Biotechnol; 1998 Aug; 16(8):773-7. PubMed ID: 9702778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secretion efficiency in Saccharomyces cerevisiae of bovine pancreatic trypsin inhibitor mutants lacking disulfide bonds is correlated with thermodynamic stability.
    Kowalski JM; Parekh RN; Wittrup KD
    Biochemistry; 1998 Feb; 37(5):1264-73. PubMed ID: 9477952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive overexpression of secreted heterologous proteins decreases extractable BiP and protein disulfide isomerase levels in Saccharomyces cerevisiae.
    Robinson AS; Wittrup KD
    Biotechnol Prog; 1995; 11(2):171-7. PubMed ID: 7536423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multicopy overexpression of bovine pancreatic trypsin inhibitor saturates the protein folding and secretory capacity of Saccharomyces cerevisiae.
    Parekh R; Forrester K; Wittrup D
    Protein Expr Purif; 1995 Aug; 6(4):537-45. PubMed ID: 8527941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast.
    Smith JD; Tang BC; Robinson AS
    Biotechnol Bioeng; 2004 Feb; 85(3):340-50. PubMed ID: 14748090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in HAC1 mRNA processing and translation between yeast and mammalian cells indicate divergence of the eukaryotic ER stress response.
    Bowring CE; Llewellyn DH
    Biochem Biophys Res Commun; 2001 Sep; 287(3):789-800. PubMed ID: 11563865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast unfolded protein response pathway regulates expression of genes for anti-oxidative stress and for cell surface proteins.
    Kimata Y; Ishiwata-Kimata Y; Yamada S; Kohno K
    Genes Cells; 2006 Jan; 11(1):59-69. PubMed ID: 16371132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light enhances the unfolded protein response as measured by BiP2 gene expression and the secretory GFP-2SC marker in Arabidopsis.
    Lu DP; Christopher DA
    Physiol Plant; 2008 Oct; 134(2):360-8. PubMed ID: 18494858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of unfolded protein response during single-chain antibody expression in Saccaromyces cerevisiae reveals different roles for BiP and PDI in folding.
    Xu P; Raden D; Doyle FJ; Robinson AS
    Metab Eng; 2005 Jul; 7(4):269-79. PubMed ID: 15990348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of misfolded protein aggregates leads to the formation of russell body-like dilated endoplasmic reticulum in yeast.
    Umebayashi K; Hirata A; Fukuda R; Horiuchi H; Ohta A; Takagi M
    Yeast; 1997 Sep; 13(11):1009-20. PubMed ID: 9290205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing yeast secretion of heterologous proteins by regulating expression rates and post-secretory loss.
    Huang D; Gore PR; Shusta EV
    Biotechnol Bioeng; 2008 Dec; 101(6):1264-75. PubMed ID: 18781684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A yeast platform for the production of single-chain antibody-green fluorescent protein fusions.
    Huang D; Shusta EV
    Appl Environ Microbiol; 2006 Dec; 72(12):7748-59. PubMed ID: 17028228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell surface expression of bacterial esterase A by Saccharomyces cerevisiae and its enhancement by constitutive activation of the cellular unfolded protein response.
    Breinig F; Diehl B; Rau S; Zimmer C; Schwab H; Schmitt MJ
    Appl Environ Microbiol; 2006 Nov; 72(11):7140-7. PubMed ID: 16980424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secretion and surface display of green fluorescent protein using the yeast Saccharomyces cerevisiae.
    Huang D; Shusta EV
    Biotechnol Prog; 2005; 21(2):349-57. PubMed ID: 15801770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of a functional intact IgG in a prokaryotic cell-free expression system.
    Frey S; Haslbeck M; Hainzl O; Buchner J
    Biol Chem; 2008 Jan; 389(1):37-45. PubMed ID: 18095868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lobe IB of the ATPase domain of Kar2p/BiP interacts with Ire1p to negatively regulate the unfolded protein response in Saccharomyces cerevisiae.
    Todd-Corlett A; Jones E; Seghers C; Gething MJ
    J Mol Biol; 2007 Mar; 367(3):770-87. PubMed ID: 17276461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a novel synergistic system for production and recovery of secreted recombinant proteins by the cell surface engineering.
    Shibasaki S; Kawabata A; Ishii J; Yagi S; Kadonosono T; Kato M; Fukuda N; Kondo A; Ueda M
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):821-8. PubMed ID: 17345082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced secretion of heterologous proteins in Pichia pastoris following overexpression of Saccharomyces cerevisiae chaperone proteins.
    Zhang W; Zhao HL; Xue C; Xiong XH; Yao XQ; Li XY; Chen HP; Liu ZM
    Biotechnol Prog; 2006; 22(4):1090-5. PubMed ID: 16889384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.