BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16334294)

  • 1. Fly-ash induced synthesis of phytochelatins in chickpea (Cicer arietinum L.) plants.
    Gupta DK; Rai UN; Tripathi RD; Sinha S; Rai P; Inouhe M
    J Environ Biol; 2005 Jul; 26(3):539-46. PubMed ID: 16334294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and biochemical parameters of Cicer arietinum L. grown on amended fly ash.
    Gupta DK; Tripathi RD; Rai UN; Mishra S; Srivastava S; Dwivedi S; Maathuis FJ
    Environ Monit Assess; 2007 Nov; 134(1-3):479-87. PubMed ID: 17342436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in amino acid profile and metal content in seeds of Cicer arietinum L. (chickpea) grown under various fly-ash amendments.
    Gupta DK; Tripathi RD; Rai UN; Dwivedi S; Mishra S; Srivastava S; Inouhe M
    Chemosphere; 2006 Nov; 65(6):939-45. PubMed ID: 16682068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic accumulation in root and shoot vis-a-vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L.
    Gupta DK; Tripathi RD; Mishra S; Srivastava S; Dwivedi S; Rai UN; Yang XE; Huanji H; Inouhe M
    J Environ Biol; 2008 May; 29(3):281-6. PubMed ID: 18972678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of various amendments for amelioration of fly-ash toxicity: growth performance and metal composition of Cassia siamea Lamk.
    Tripathi RD; Vajpayee P; Singh N; Rai UN; Kumar A; Ali MB; Kumar B; Yunus M
    Chemosphere; 2004 Mar; 54(11):1581-8. PubMed ID: 14675837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the levels of phytochelatins and related metal-binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions.
    Gupta DK; Tohoyama H; Joho M; Inouhe M
    J Plant Res; 2004 Jun; 117(3):253-6. PubMed ID: 15098099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants.
    Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F
    Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fly-ash-induced oxidative stress and tolerance in Prosopis juliflora L. grown on different amended substrates.
    Sinha S; Rai UN; Bhatt K; Pandey K; Gupta AK
    Environ Monit Assess; 2005 Mar; 102(1-3):447-57. PubMed ID: 15869202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revegetating fly ash landfills with Prosopis juliflora L.: impact of different amendments and Rhizobium inoculation.
    Rai UN; Pandey K; Sinha S; Singh A; Saxena R; Gupta DK
    Environ Int; 2004 May; 30(3):293-300. PubMed ID: 14987858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and elemental accumulation of plants grown in acidic soil amended with coal fly ash-sewage sludge co-compost.
    Wong JW; Selvam A
    Arch Environ Contam Toxicol; 2009 Oct; 57(3):515-23. PubMed ID: 19294455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil.
    Dwivedi S; Tripathi RD; Srivastava S; Mishra S; Shukla MK; Tiwari KK; Singh R; Rai UN
    Chemosphere; 2007 Feb; 67(1):140-51. PubMed ID: 17166555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fly ash influenced the heavy metal status of the soil and the seeds of sunflower. A case study.
    Siddiqui S; Ahmad A; Hayat S
    J Environ Biol; 2004 Jan; 25(1):59-63. PubMed ID: 15303705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible roles of phytochelatins and glutathione metabolism in cadmium tolerance in chickpea roots.
    Gupta DK; Tohoyama H; Joho M; Inouhe M
    J Plant Res; 2002 Dec; 115(6):429-37. PubMed ID: 12579446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of MSWI fly ash on acid soil and its effect on the environment.
    Wang T; Liu T; Sun C
    Waste Manag; 2008; 28(10):1977-82. PubMed ID: 17881210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Management of lignite fly ash for improving soil fertility and crop productivity.
    Ram LC; Srivastava NK; Jha SK; Sinha AK; Masto RE; Selvi VA
    Environ Manage; 2007 Sep; 40(3):438-52. PubMed ID: 17705037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of eco-friendly novel amendments for sustainable utilization of Fly ash based on growth performance, hormones, antioxidant, and heavy metal translocation in chickpea (Cicer arietinum L.) plant.
    Upadhyay SK; Ahmad M; Srivastava AK; Abhilash PC; Sharma B
    Chemosphere; 2021 Mar; 267():129216. PubMed ID: 33340884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal uptake by Scirpus Littoralis Schrad. from fly ash dosed and metal spiked soils.
    Bhattacharya T; Banerjee DK; Gopal B
    Environ Monit Assess; 2006 Oct; 121(1-3):363-80. PubMed ID: 16738776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat.
    Pawlik-Skowrońska B; Pirszel J; Brown MT
    Aquat Toxicol; 2007 Jul; 83(3):190-9. PubMed ID: 17532484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Rhizobium (CA-1) inoculation in increasing growth and metal accumulation in Cicer arietinum L. growing under fly-ash stress condition.
    Gupta DK; Rai UN; Sinha S; Tripathi RD; Nautiyal BD; Rai P; Inouhe M
    Bull Environ Contam Toxicol; 2004 Aug; 73(2):424-31. PubMed ID: 15386062
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.