These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16334308)

  • 41. First Report of Frankliniella fusca as a Vector of Impatiens necrotic spot tospovirus.
    Naidu RA; Deom CM; Sherwood JL
    Plant Dis; 2001 Nov; 85(11):1211. PubMed ID: 30823188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A predictive model for spotted wilt epidemics in peanut based on local weather conditions and the tomato spotted wilt virus risk index.
    Olatinwo RO; Paz JO; Brown SL; Kemerait RC; Culbreath AK; Beasley JP; Hoogenboom G
    Phytopathology; 2008 Oct; 98(10):1066-74. PubMed ID: 18943452
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epidemiology of tomato spotted wilt virus in Chrysanthemum morifolium in South Korea and its management using a soil-dwelling predatory mite (Stratiolaelaps scimitus) and essential oils.
    Yoon JB; Choi SK; Cho IS; Kwon TR; Yang CY; Seo MH; Yoon JY
    Virus Res; 2020 Nov; 289():198128. PubMed ID: 32846194
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thrips transmission of tospoviruses.
    Rotenberg D; Jacobson AL; Schneweis DJ; Whitfield AE
    Curr Opin Virol; 2015 Dec; 15():80-9. PubMed ID: 26340723
    [TBL] [Abstract][Full Text] [Related]  

  • 45. First Report on the Multiplication of Tomato Spotted Wilt Tospovirus in Tobacco Thrips, Frankliniella fusca.
    Pappu HR; Todd JW; Culbreath AK; Bandla MD; Sherwood JL
    Plant Dis; 1998 Nov; 82(11):1282. PubMed ID: 30845426
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus.
    Abe H; Tomitaka Y; Shimoda T; Seo S; Sakurai T; Kugimiya S; Tsuda S; Kobayashi M
    Plant Cell Physiol; 2012 Jan; 53(1):204-12. PubMed ID: 22180600
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RNA interference tools for the western flower thrips, Frankliniella occidentalis.
    Badillo-Vargas IE; Rotenberg D; Schneweis BA; Whitfield AE
    J Insect Physiol; 2015 May; 76():36-46. PubMed ID: 25796097
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adding Epidemiologically Important Meteorological Data to Peanut Rx, the Risk Assessment Framework for Spotted Wilt of Peanut.
    Chappell TM; Codod CB; Williams BW; Kemerait RC; Culbreath AK; Kennedy GG
    Phytopathology; 2020 Jun; 110(6):1199-1207. PubMed ID: 32133919
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient RT-PCR tool for tomato spotted wilt virus detection in its vectors Thrips tabaci and Frankliniella occidentalis.
    Šubr ZW; Király KD; Fail J; Almási A; Salánki K; Fedor P
    Acta Virol; 2019; 63(3):341-343. PubMed ID: 31507203
    [No Abstract]   [Full Text] [Related]  

  • 50. Factors Affecting Population Dynamics of Thrips Vectors of Soybean vein necrosis virus.
    Keough S; Danielson J; Marshall JM; Lagos-Kutz D; Voegtlin DJ; Srinivasan R; Nachappa P
    Environ Entomol; 2018 Jun; 47(3):734-740. PubMed ID: 29506040
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tospoviruses in the Mediterranean area.
    Turina M; Tavella L; Ciuffo M
    Adv Virus Res; 2012; 84():403-37. PubMed ID: 22682175
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of Spinosad Resistance on Transmission of Tomato Spotted Wilt Virus by the Western Flower Thrips (Thysanoptera: Thripidae).
    Zhao W; Wan Y; Xie W; Xu B; Zhang Y; Wang S; Wei G; Zhou X; Wu Q
    J Econ Entomol; 2016 Feb; 109(1):62-9. PubMed ID: 26377766
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Within-Plant Distribution and Dynamics of Thrips Species (Thysanoptera: Thripidae) in Cotton.
    Reay-Jones FPF; Greene JK; Herbert DA; Jacobson AL; Kennedy GG; Reisig DD; Roberts PM
    J Econ Entomol; 2017 Aug; 110(4):1563-1575. PubMed ID: 28475718
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of Early Spring Weather Factors on the Risk of Tomato Spotted Wilt in Peanut.
    Olatinwo RO; Paz JO; Brown SL; Kemerait RC; Culbreath AK; Hoogenboom G
    Plant Dis; 2009 Aug; 93(8):783-788. PubMed ID: 30764328
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of Wild Peanut Species and Their Allotetraploids for Resistance against Thrips and Thrips-Transmitted Tomato Spotted Wilt Orthotospovirus (TSWV).
    Chen YJ; Pandey S; Catto M; Leal-Bertioli S; Abney MR; Bag S; Hopkins M; Culbreath A; Srinivasan R
    Pathogens; 2023 Aug; 12(9):. PubMed ID: 37764910
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Defense-Related Gene Expression Following an Orthotospovirus Infection Is Influenced by Host Resistance in
    Catto MA; Shrestha A; Abney MR; Champagne DE; Culbreath AK; Leal-Bertioli SCM; Hunt BG; Srinivasan R
    Viruses; 2021 Jul; 13(7):. PubMed ID: 34372510
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interactive Effects of Planting Date and Cultivar on Tomato Spotted Wilt of Peanut.
    Culbreath AK; Tillman BL; Tubbs RS; Beasley JP; Kemerait RC; Brenneman TB
    Plant Dis; 2010 Jul; 94(7):898-904. PubMed ID: 30743550
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of Planting Date on Thrips (Thysanoptera: Thripidae) in Cotton.
    Kerns CD; Greene JK; Reay-Jones FPF; Bridges WC
    J Econ Entomol; 2019 Mar; 112(2):699-707. PubMed ID: 30597059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A rapid and efficient inoculation method for Tomato spotted wilt tospovirus.
    Mandal B; Csinos AS; Martinez-Ochoa N; Pappu HR
    J Virol Methods; 2008 Apr; 149(1):195-8. PubMed ID: 18272238
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pathogenesis of Tomato Spotted Wilt Virus in Peanut Plants Dually Infected with Peanut Mottle Virus.
    Hoffmann K; Geske SM; Moyer JW
    Plant Dis; 1998 Jun; 82(6):610-614. PubMed ID: 30857008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.