These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16334896)

  • 1. Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2005 Nov; 118(5):2798-801. PubMed ID: 16334896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1362-72. PubMed ID: 15807024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lumped mucosal wave model of the vocal folds revisited: recent extensions and oscillation hysteresis.
    Lucero JC; Koenig LL; Lourenço KG; Ruty N; Pelorson X
    J Acoust Soc Am; 2011 Mar; 129(3):1568-79. PubMed ID: 21428520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds.
    Lucero JC; Lourenço K; Hermant N; Van Hirtum A; Pelorson X
    J Acoust Soc Am; 2012 Jul; 132(1):403-11. PubMed ID: 22779487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibration in a self-oscillating vocal fold model with left-right asymmetry in body-layer stiffness.
    Zhang Z
    J Acoust Soc Am; 2010 Nov; 128(5):EL279-85. PubMed ID: 21110539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vocal fold dynamics for frequency change.
    Hollien H
    J Voice; 2014 Jul; 28(4):395-405. PubMed ID: 24726331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anterior-posterior biphonation in a finite element model of vocal fold vibration.
    Tao C; Jiang JJ
    J Acoust Soc Am; 2006 Sep; 120(3):1570-7. PubMed ID: 17004479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of consonant manner and vowel height on intraoral pressure and articulatory contact at voicing offset and onset for voiceless obstruents.
    Koenig LL; Fuchs S; Lucero JC
    J Acoust Soc Am; 2011 May; 129(5):3233-44. PubMed ID: 21568425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser projection in high-speed glottography for high-precision measurements of laryngeal dimensions and dynamics.
    Schuster M; Lohscheller J; Kummer P; Eysholdt U; Hoppe U
    Eur Arch Otorhinolaryngol; 2005 Jun; 262(6):477-81. PubMed ID: 15942801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonation onset: vocal fold modeling and high-speed glottography.
    Mergell P; Herzel H; Wittenberg T; Tigges M; Eysholdt U
    J Acoust Soc Am; 1998 Jul; 104(1):464-70. PubMed ID: 9670538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Volume, Pitch, and Phonation Type on Oscillation Initiation and Termination Phases Investigated With High-speed Videoendoscopy.
    Kunduk M; Ikuma T; Blouin DC; McWhorter AJ
    J Voice; 2017 May; 31(3):313-322. PubMed ID: 27671752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation.
    Bailly L; Pelorson X; Henrich N; Ruty N
    J Acoust Soc Am; 2008 Nov; 124(5):3296-308. PubMed ID: 19045812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of mucosal loading on vocal fold vibration.
    Tao C; Jiang JJ
    Chaos; 2009 Jun; 19(2):023113. PubMed ID: 19566248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear source-filter coupling in phonation: theory.
    Titze IR
    J Acoust Soc Am; 2008 May; 123(5):2733-49. PubMed ID: 18529191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of subglottal acoustics on laboratory models of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Sep; 120(3):1558-69. PubMed ID: 17004478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The false vocal folds: shape and size in frontal view during phonation based on laminagraphic tracings.
    Agarwal M; Scherer RC; Hollien H
    J Voice; 2003 Jun; 17(2):97-113. PubMed ID: 12825644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Detailed Motion Analysis of the Angular Velocity Between the Vocal Folds During Throat Clearing Using High-speed Digital Imaging.
    Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H
    J Voice; 2016 Nov; 30(6):770.e1-770.e8. PubMed ID: 26778326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the relation between the phonation threshold lung pressure and the oscillation frequency of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2007 Jun; 121(6):3280-3. PubMed ID: 17552679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.