These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 16335097)

  • 1. Analog studies of the human systemic arterial tree.
    Westerhof N; Bosman F; De Vries CJ; Noordergraaf A
    J Biomech; 1969 May; 2(2):121-43. PubMed ID: 16335097
    [No Abstract]   [Full Text] [Related]  

  • 2. Computer modeling of the human systemic arterial tree.
    Snyder MF; Rideout VC; Hillestad RJ
    J Biomech; 1968 Dec; 1(4):341-53. PubMed ID: 16329438
    [No Abstract]   [Full Text] [Related]  

  • 3. The relationship of pressure gradient to blood velocity based on a continuum theory of blood.
    Kline KA; Allen SJ
    J Biomech; 1969 Jul; 2(3):313-8. PubMed ID: 16335093
    [No Abstract]   [Full Text] [Related]  

  • 4. Linear elastic mechanics of mock arteries: empirical versus theoretically predicted pulsatile stent deflection.
    Rajesh R; Conti JC; Strope ER
    Biomed Sci Instrum; 2007; 43():54-62. PubMed ID: 17487057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aortic pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.
    Nguyen PH; Tuzun E; Quick CM
    Am J Physiol Regul Integr Comp Physiol; 2016 Sep; 311(3):R522-31. PubMed ID: 27306830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel wave reflection model of the human arterial system.
    Zhang H; Li JK
    Cardiovasc Eng; 2009 Jun; 9(2):39-48. PubMed ID: 19495973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Numerical simulation of the relationship between blood pressure and blood stream of arteries].
    Shi X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1121-3, 1127. PubMed ID: 16422080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure pulse velocity is related to the longitudinal elastic properties of the artery.
    Wang YY; Jan MY; Wang GC; Bau JG; Wang WK
    Physiol Meas; 2004 Dec; 25(6):1397-403. PubMed ID: 15712718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving the hemodynamic inverse problem.
    Quick CM; Berger DS; Stewart RH; Laine GA; Hartley CJ; Noordergraaf A
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):361-8. PubMed ID: 16532762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of the local nonlinear arterial flow theory: influence of the upstream and downstream conditions.
    Bensalah A; Flaud P
    Med Eng Phys; 2008 Nov; 30(9):1159-67. PubMed ID: 18400549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsatile diastolic increase and systolic decrease in arterial blood pressure: their mechanism of production and physiological role.
    Mandoki JJ; Casa-Tirao B; Molina-Guarneros JA; Jiménez-Orozco FA; García-Mondragón MJ; Maldonado-Espinoza A
    Prog Biophys Mol Biol; 2013 Aug; 112(3):55-7. PubMed ID: 23727290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling pulse wave propagation in the rabbit systemic circulation to assess the effects of altered nitric oxide synthesis.
    Alastruey J; Nagel SR; Nier BA; Hunt AA; Weinberg PD; Peiró J
    J Biomech; 2009 Sep; 42(13):2116-23. PubMed ID: 19646697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anharmonic analysis of arterial blood pressure and flow pulses.
    Voltairas PA; Fotiadis DI; Massalas CV; Michalis LK
    J Biomech; 2005 Jul; 38(7):1423-31. PubMed ID: 15922753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling arterial windkessel with peripheral vasomotion: modeling the effects on low-frequency oscillations.
    Baselli G; Porta A; Pagani M
    IEEE Trans Biomed Eng; 2006 Jan; 53(1):53-64. PubMed ID: 16402603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arterial stiffness and wave reflections in marathon runners.
    Vlachopoulos C; Kardara D; Anastasakis A; Baou K; Terentes-Printzios D; Tousoulis D; Stefanadis C
    Am J Hypertens; 2010 Sep; 23(9):974-9. PubMed ID: 20489686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thick walled viscoelastic model for the mechanics of arteries.
    Kuchar NR; Ostrach S
    J Biomech; 1969 Oct; 2(4):443-54. PubMed ID: 16335143
    [No Abstract]   [Full Text] [Related]  

  • 17. Radial distributions of temperature pressure and velocities for pulsatile blood flow in an axisymmetrical stiff tube.
    Yao L; Liao D; Zeng Y; Xu X; Xu H
    Physiol Meas; 2004 Dec; 25(6):1437-42. PubMed ID: 15712722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exponential taper in arteries: an exact solution of its effect on blood flow velocity waveforms and impedance.
    Myers LJ; Capper WL
    Med Eng Phys; 2004 Mar; 26(2):147-55. PubMed ID: 15036182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of the reservoir and wave pressure and velocity from measurements at an arbitrary location in arteries.
    Aguado-Sierra J; Alastruey J; Wang JJ; Hadjiloizou N; Davies J; Parker KH
    Proc Inst Mech Eng H; 2008 May; 222(4):403-16. PubMed ID: 18595353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of physiological and simple pulsatile flows through stenosed arteries.
    Zendehbudi GR; Moayeri MS
    J Biomech; 1999 Sep; 32(9):959-65. PubMed ID: 10460133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.