These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16335107)

  • 1. The mechanical consequences of variation in the mineral content of bone.
    Currey JD
    J Biomech; 1969 Mar; 2(1):1-11. PubMed ID: 16335107
    [No Abstract]   [Full Text] [Related]  

  • 2. The relationship between the stiffness and the mineral content of bone.
    Currey JD
    J Biomech; 1969 Oct; 2(4):477-80. PubMed ID: 16335147
    [No Abstract]   [Full Text] [Related]  

  • 3. Relationship between the mineral content of human trabecular bone and selected parameters determined from fatigue test at stepwise-increasing amplitude.
    Mazurkiewicz A; Topoliński T
    Acta Bioeng Biomech; 2017; 19(3):19-26. PubMed ID: 29205222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rheological model for uncalcified parallel-fibred collagenous tissue.
    Viidik A
    J Biomech; 1968 Jan; 1(1):3-11. PubMed ID: 16329304
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone.
    Tai K; Qi HJ; Ortiz C
    J Mater Sci Mater Med; 2005 Oct; 16(10):947-59. PubMed ID: 16167103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Young׳s modulus of trabeculae in microscale using macro-scale׳s relationships between bone density and mechanical properties.
    Cyganik Ł; Binkowski M; Kokot G; Rusin T; Popik P; Bolechała F; Nowak R; Wróbel Z; John A
    J Mech Behav Biomed Mater; 2014 Aug; 36():120-34. PubMed ID: 24837330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The modified super-ellipsoid yield criterion for human trabecular bone.
    Bayraktar HH; Gupta A; Kwon RY; Papadopoulos P; Keaveny TM
    J Biomech Eng; 2004 Dec; 126(6):677-84. PubMed ID: 15796326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of variation in specific gravity and ash content on the mechanical properties of human compact bone.
    Mather BS
    J Biomech; 1968 Aug; 1(3):207-10. PubMed ID: 16329291
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone.
    Grant CA; Wilson LJ; Langton C; Epari D
    Med Eng Phys; 2014 Jul; 36(7):869-74. PubMed ID: 24793408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bone mineral content on the tensile properties of cortical bone: experiments and theory.
    Kotha SP; Guzelsu N
    J Biomech Eng; 2003 Dec; 125(6):785-93. PubMed ID: 14986402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of in vivo bone under cyclic loading.
    Seireg A; Kempke W
    J Biomech; 1969 Oct; 2(4):455-61. PubMed ID: 16335144
    [No Abstract]   [Full Text] [Related]  

  • 12. An in vivo ovine model of bone tissue alterations in simulated microgravity conditions.
    Gadomski BC; McGilvray KC; Easley JT; Palmer RH; Ehrhart EJ; Haussler KK; Browning RC; Santoni BG; Puttlitz CM
    J Biomech Eng; 2014 Feb; 136(2):021020. PubMed ID: 24170133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive modelling of inelastic behaviour of cortical bone.
    Natali AN; Carniel EL; Pavan PG
    Med Eng Phys; 2008 Sep; 30(7):905-12. PubMed ID: 18207444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How bone tissue and cells experience elevated temperatures during orthopaedic cutting: an experimental and computational investigation.
    Dolan EB; Vaughan TJ; Niebur GL; Casey C; Tallon D; McNamara LM
    J Biomech Eng; 2014 Feb; 136(2):021019. PubMed ID: 24317222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical properties of human tooth enamel and enamel sheath material under load.
    Haines DJ
    J Biomech; 1968 Jul; 1(2):117-25. PubMed ID: 16329299
    [No Abstract]   [Full Text] [Related]  

  • 16. Three-point bending and acoustic emission study of adult rat femora after immobilization and free remobilization.
    Trebacz H; Zdunek A
    J Biomech; 2006; 39(2):237-45. PubMed ID: 16321625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue.
    Bayraktar HH; Morgan EF; Niebur GL; Morris GE; Wong EK; Keaveny TM
    J Biomech; 2004 Jan; 37(1):27-35. PubMed ID: 14672565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress analysis of the femur.
    Toridis TG
    J Biomech; 1969 May; 2(2):163-74. PubMed ID: 16335101
    [No Abstract]   [Full Text] [Related]  

  • 19. Tensile and compressive properties of the medial rabbit meniscus.
    Sweigart MA; Athanasiou KA
    Proc Inst Mech Eng H; 2005 Sep; 219(5):337-47. PubMed ID: 16225150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental and theoretical approach of elasticity and viscoelasticity of compact and spongy bone with periodic homogenization.
    Cherraf-Schweyer C; Maurice G; Taghite M; Taous K
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):195-207. PubMed ID: 17558648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.