BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16335269)

  • 41. Development of novel nitroxyl radicals for controlling reactivity with ascorbic acid.
    Kinoshita Y; Yamada K; Yamasaki T; Sadasue H; Sakai K; Utsumi H
    Free Radic Res; 2009 Jun; 43(6):565-71. PubMed ID: 19384748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrogen-transfer reactions from phenols to TEMPO prefluorescent probes in micellar systems.
    Aliaga C; Juárez-Ruiz JM; Scaiano JC; Aspée A
    Org Lett; 2008 Jun; 10(11):2147-50. PubMed ID: 18465870
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitroxyl peptides as catalysts of enantioselective oxidations.
    Formaggio F; Bonchio M; Crisma M; Peggion C; Mezzato S; Polese A; Barazza A; Antonello S; Maran F; Broxterman QB; Kaptein B; Kamphuis J; Vitale RM; Saviano M; Benedetti E; Toniolo C
    Chemistry; 2002 Jan; 8(1):84-93. PubMed ID: 11822466
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trapping of fatty acid allyl radicals generated in lipoxygenase reactions in biological fluids by nitroxyl radical.
    Takajo T; Tsuchida K; Yokota A; Koshiishi I
    Biomed Chromatogr; 2010 Jul; 24(7):794-7. PubMed ID: 20082280
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Study on the interaction between nitroxide free radical and conjugated polyelectrolytes by fluorimetry.
    Dou W; Su X
    Luminescence; 2009; 24(1):45-9. PubMed ID: 18814187
    [TBL] [Abstract][Full Text] [Related]  

  • 46. To be a radical or not to be one? The fate of the stable nitroxide radical TEMPO [(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl] undergoing plasma polymerization into thin-film coatings.
    Michl TD; Tran DTT; Böttle K; Kuckling HF; Zhalgasbaikyzy A; Ivanovská B; Cavallaro AA; Araque Toledo MA; Sherman PJ; Al-Bataineh SA; Vasilev K
    Biointerphases; 2020 Jun; 15(3):031015. PubMed ID: 32590900
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cu(II)-nitroxyl radicals as catalytic galactose oxidase mimics.
    Dijksman A; Arends IW; Sheldon RA
    Org Biomol Chem; 2003 Sep; 1(18):3232-7. PubMed ID: 14527157
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient and selective Cu/nitroxyl-catalyzed methods for aerobic oxidative lactonization of diols.
    Xie X; Stahl SS
    J Am Chem Soc; 2015 Mar; 137(11):3767-70. PubMed ID: 25751494
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activation of the C-H bond by electrophilic attack: theoretical study of the reaction mechanism of the aerobic oxidation of alcohols to aldehydes by the Cu(bipy)(2+)/2,2,6,6-tetramethylpiperidinyl-1-oxy cocatalyst system.
    Michel C; Belanzoni P; Gamez P; Reedijk J; Baerends EJ
    Inorg Chem; 2009 Dec; 48(24):11909-20. PubMed ID: 19938864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrochemical intramolecular aminooxygenation of unactivated alkenes.
    Xu F; Zhu L; Zhu S; Yan X; Xu HC
    Chemistry; 2014 Sep; 20(40):12740-4. PubMed ID: 25145684
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transition-metal-free oxidative coupling reactions for the formation of C-C and C-N bonds mediated by TEMPO and its derivatives.
    Murarka S; Wertz S; Studer A
    Chimia (Aarau); 2012; 66(6):413-7. PubMed ID: 22871285
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expansion of Substrate Scope for Nitroxyl Radical/Copper-Catalyzed Aerobic Oxidation of Primary Alcohols: A Guideline for Catalyst Selection.
    Sasano Y; Yamaichi A; Sasaki R; Nagasawa S; Iwabuchi Y
    Chem Pharm Bull (Tokyo); 2021; 69(5):488-497. PubMed ID: 33952858
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetics of the reaction between nitroxide and thiyl radicals: nitroxides as antioxidants in the presence of thiols.
    Goldstein S; Samuni A; Merenyi G
    J Phys Chem A; 2008 Sep; 112(37):8600-5. PubMed ID: 18729428
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nitroxide radicals as hydrogen bonding acceptors. An infrared and EPR study.
    Franchi P; Lucarini M; Pedrielli P; Pedulli GF
    Chemphyschem; 2002 Sep; 3(9):789-93. PubMed ID: 12436906
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of linoleic acid oxidation by interaction with a protein-rich oat fraction.
    Lehtinen P; Laakso S
    J Agric Food Chem; 2000 Nov; 48(11):5654-7. PubMed ID: 11087534
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Possible artefacts of antioxidant assays performed in the presence of nitroxides and nitroxide-containing nanoparticles.
    Pichla M; Bartosz G; Pieńkowska N; Sadowska-Bartosz I
    Anal Biochem; 2020 May; 597():113698. PubMed ID: 32222539
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Laccase-catalyzed mediated oxidation of benzyl alcohol: the role of TEMPO and formation of products including benzonitrile studied by nanoelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Marjasvaara A; Torvinen M; Vainiotalo P
    J Mass Spectrom; 2004 Oct; 39(10):1139-46. PubMed ID: 15468136
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Determination of antibiotics by amperometry using nortropine N-oxyl, a highly active nitroxyl radical.
    Ono T; Sato F; Kumano M; Komatsu S; Sugiyama K; Watanabe K; Yoshida K; Sasano Y; Fujimura T; Iwabuchi Y; Kashiwagi Y; Sato K
    Anal Sci; 2023 Oct; 39(10):1771-1775. PubMed ID: 37378820
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photooxidation of alcohols by a porphyrin/quinone/TEMPO system.
    Nagasawa T; Allakhverdiev SI; Kimura Y; Nagata T
    Photochem Photobiol Sci; 2009 Feb; 8(2):174-80. PubMed ID: 19247509
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Novel glycosylation of the nitroxyl radicals with peracetylated glycosyl fluorides using a combination of BF(3) x OEt(2) and an amine base as promoters.
    Sato S; Kumazawa T; Matsuba S; Onodera J; Aoyama M; Obara H; Kamada H
    Carbohydr Res; 2001 Aug; 334(3):215-22. PubMed ID: 11513828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.