BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 16335422)

  • 1. [Participation of ATP-sensitive potassium channel in autoregulation of coronary blood flow under the condition of limited motor activity].
    Solodkov AP; Lazuko SS
    Ross Fiziol Zh Im I M Sechenova; 2005 Oct; 91(10):1149-61. PubMed ID: 16335422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Adaptation to short-term stress exposure increases the activity ATP-sensitive potassium channels in the smooth muscle cells of coronary blood vessels].
    Lazuko SS; Solodkov AP; Manukhina EB
    Ross Fiziol Zh Im I M Sechenova; 2006 Dec; 92(12):1444-62. PubMed ID: 17523466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration of stiffness in underperfused diabetic rat hearts by glyburide, a KATP channel blocker, and its prevention by levcromakalim and insulin.
    Higuchi M; Miyagi K; Kayo S; Sakanashi M
    Cardiovasc Res; 1997 Aug; 35(2):303-14. PubMed ID: 9349393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ATP-sensitive potassium channel inhibition on coronary metabolic vasodilation in humans.
    Farouque HM; Worthley SG; Meredith IT
    Arterioscler Thromb Vasc Biol; 2004 May; 24(5):905-10. PubMed ID: 15016638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgenic expression of a dominant negative K(ATP) channel subunit in the mouse endothelium: effects on coronary flow and endothelin-1 secretion.
    Malester B; Tong X; Ghiu I; Kontogeorgis A; Gutstein DE; Xu J; Hendricks-Munoz KD; Coetzee WA
    FASEB J; 2007 Jul; 21(9):2162-72. PubMed ID: 17341678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium channel blockade and halothane vasodilation in conducting and resistance coronary arteries.
    Larach DR; Schuler HG
    J Pharmacol Exp Ther; 1993 Oct; 267(1):72-81. PubMed ID: 8229789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K+ATP channels and adenosine are not necessary for coronary autoregulation.
    Stepp DW; Kroll K; Feigl EO
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1299-308. PubMed ID: 9321819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of K+ATP channels in coronary vasodilation during exercise.
    Duncker DJ; Van Zon NS; Altman JD; Pavek TJ; Bache RJ
    Circulation; 1993 Sep; 88(3):1245-53. PubMed ID: 8353886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KATP channel modulation in working rat hearts with coronary occlusion: effects of cromakalim, cicletanine, and glibenclamide.
    Ferdinandy P; Szilvássy Z; Droy-Lefaix MT; Tarrade T; Koltai M
    Cardiovasc Res; 1995 Nov; 30(5):781-7. PubMed ID: 8595627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Nitrogen monoxide and functional activity of large conductance Ca-activated potassium channels in coronary vessels in rats with limited motor activity].
    Solodkov AP; Maĭorova SS; Lazuko SS
    Ross Fiziol Zh Im I M Sechenova; 2009 Jul; 95(7):736-49. PubMed ID: 19803460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glibenclamide, a putative ATP-sensitive K+ channel blocker, inhibits coronary autoregulation in anesthetized dogs.
    Narishige T; Egashira K; Akatsuka Y; Katsuda Y; Numaguchi K; Sakata M; Takeshita A
    Circ Res; 1993 Oct; 73(4):771-6. PubMed ID: 8370126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beating myocardium counteracts myogenic tone of coronary microvessels: involvement of ATP-sensitive potassium channels.
    Takeda S; Komaru T; Takahashi K; Sato K; Kanatsuka H; Kokusho Y; Shirato K; Shimokawa H
    Am J Physiol Heart Circ Physiol; 2006 Dec; 291(6):H3050-7. PubMed ID: 16861700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mediators of coronary reactive hyperaemia in isolated mouse heart.
    Zatta AJ; Headrick JP
    Br J Pharmacol; 2005 Feb; 144(4):576-87. PubMed ID: 15655499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intact nitric oxide production is obligatory for the sustained flow response during hypercapnic acidosis in guinea pig heart.
    Heintz A; Koch T; Deussen A
    Cardiovasc Res; 2005 Apr; 66(1):55-63. PubMed ID: 15769448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels.
    Lindauer U; Vogt J; Schuh-Hofer S; Dreier JP; Dirnagl U
    J Cereb Blood Flow Metab; 2003 Oct; 23(10):1227-38. PubMed ID: 14526233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ATP-sensitive potassium channel blocker glibenclamide (glyburide) does not abolish preconditioning in isolated ischemic rat hearts.
    Grover GJ; Dzwonczyk S; Sleph PG; Sargent CA
    J Pharmacol Exp Ther; 1993 May; 265(2):559-64. PubMed ID: 8496806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of vasoactive intestinal peptide-elicited coronary vasodilation in the isolated perfused rat heart.
    Sawmiller DR; Ashtari M; Urueta H; Leschinsky M; Henning RJ
    Neuropeptides; 2006 Oct; 40(5):349-55. PubMed ID: 17030371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury--Evidence for a role of K ATP channels.
    Johansen D; Ytrehus K; Baxter GF
    Basic Res Cardiol; 2006 Jan; 101(1):53-60. PubMed ID: 16328106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preconditioning improves cardioplegia-related coronary microvascular smooth muscle hypercontractility: role of KATP channels.
    Matsuda N; Morgan KG; Sellke FW
    J Thorac Cardiovasc Surg; 1999 Sep; 118(3):438-45. PubMed ID: 10469957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.