These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 16335965)
1. Perturbation and interpretation of nitrogen isotope distribution patterns in proteomics. Snijders AP; de Koning B; Wright PC J Proteome Res; 2005; 4(6):2185-91. PubMed ID: 16335965 [TBL] [Abstract][Full Text] [Related]
2. Novel approach for peptide quantitation and sequencing based on 15N and 13C metabolic labeling. Snijders AP; de Vos MG; Wright PC J Proteome Res; 2005; 4(2):578-85. PubMed ID: 15822937 [TBL] [Abstract][Full Text] [Related]
3. Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis. Ji C; Guo N; Li L J Proteome Res; 2005; 4(6):2099-108. PubMed ID: 16335955 [TBL] [Abstract][Full Text] [Related]
4. Method for qualitative comparisons of protein mixtures based on enzyme-catalyzed stable-isotope incorporation. Mirgorodskaya E; Wanker E; Otto A; Lehrach H; Gobom J J Proteome Res; 2005; 4(6):2109-16. PubMed ID: 16335956 [TBL] [Abstract][Full Text] [Related]
5. Inverse 15N-metabolic labeling/mass spectrometry for comparative proteomics and rapid identification of protein markers/targets. Wang YK; Ma Z; Quinn DF; Fu EW Rapid Commun Mass Spectrom; 2002; 16(14):1389-97. PubMed ID: 12112619 [TBL] [Abstract][Full Text] [Related]
6. Relative quantification of proteins across the species boundary through the use of shared peptides. Snijders AP; de Koning B; Wright PC J Proteome Res; 2007 Jan; 6(1):97-104. PubMed ID: 17203953 [TBL] [Abstract][Full Text] [Related]
7. Incorporation of carbon and nitrogen atoms into proteins measured by protein-based stable isotope probing (Protein-SIP). Jehmlich N; Schmidt F; Hartwich M; von Bergen M; Richnow HH; Vogt C Rapid Commun Mass Spectrom; 2008 Sep; 22(18):2889-97. PubMed ID: 18727149 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of the Sulfolobus solfataricus P2 proteome. Chong PK; Wright PC J Proteome Res; 2005; 4(5):1789-98. PubMed ID: 16212434 [TBL] [Abstract][Full Text] [Related]
9. A study of reproducibility of guanidination-dimethylation labeling and liquid chromatography matrix-assisted laser desorption ionization mass spectrometry for relative proteome quantification. Ji C; Zhang N; Damaraju S; Damaraju VL; Carpenter P; Cass CE; Li L Anal Chim Acta; 2007 Mar; 585(2):219-26. PubMed ID: 17386668 [TBL] [Abstract][Full Text] [Related]
10. Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry. Vanrobaeys F; Van Coster R; Dhondt G; Devreese B; Van Beeumen J J Proteome Res; 2005; 4(6):2283-93. PubMed ID: 16335977 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the possible proteomic application of trypsin from Streptomyces griseus. Stosová T; Sebela M; Rehulka P; Sedo O; Havlis J; Zdráhal Z Anal Biochem; 2008 May; 376(1):94-102. PubMed ID: 18261455 [TBL] [Abstract][Full Text] [Related]
12. In-Gel 18O labeling for improved identification of proteins from 2-DE Gel spots in comparative proteomic experiments. Broedel O; Krause E; Stephanowitz H; Schuemann M; Eravci M; Weist S; Brunkau C; Wittke J; Eravci S; Baumgartner A J Proteome Res; 2009 Jul; 8(7):3771-7. PubMed ID: 19425618 [TBL] [Abstract][Full Text] [Related]
13. 2-DE proteomic analysis of the model cyanobacterium Anabaena variabilis. Barrios-Llerena ME; Reardon KF; Wright PC Electrophoresis; 2007 May; 28(10):1624-32. PubMed ID: 17447238 [TBL] [Abstract][Full Text] [Related]
14. Quantitative proteomics using uniform (15)N-labeling, MASCOT, and the trans-proteomic pipeline. Palmblad M; Bindschedler LV; Cramer R Proteomics; 2007 Oct; 7(19):3462-9. PubMed ID: 17726679 [TBL] [Abstract][Full Text] [Related]
15. Automated interpretation of mass spectra of complex mixtures by matching of isotope peak distributions. Fernández-de-Cossio J; Gonzalez LJ; Satomi Y; Betancourt L; Ramos Y; Huerta V; Besada V; Padron G; Minamino N; Takao T Rapid Commun Mass Spectrom; 2004; 18(20):2465-72. PubMed ID: 15384131 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of the cyanobacterium of the Azolla symbiosis: identity, adaptation, and NifH modification. Ekman M; Tollbäck P; Bergman B J Exp Bot; 2008; 59(5):1023-34. PubMed ID: 18065763 [TBL] [Abstract][Full Text] [Related]
17. Quantitative proteome analysis of cisplatin-induced apoptotic Jurkat T cells by stable isotope labeling with amino acids in cell culture, SDS-PAGE, and LC-MALDI-TOF/TOF MS. Schmidt F; Hustoft HK; Strozynski M; Dimmler C; Rudel T; Thiede B Electrophoresis; 2007 Dec; 28(23):4359-68. PubMed ID: 17987630 [TBL] [Abstract][Full Text] [Related]
18. Functional proteome analysis of the banana plant (Musa spp.) using de novo sequence analysis of derivatized peptides. Samyn B; Sergeant K; Carpentier S; Debyser G; Panis B; Swennen R; Van Beeumen J J Proteome Res; 2007 Jan; 6(1):70-80. PubMed ID: 17203950 [TBL] [Abstract][Full Text] [Related]
19. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry. Chen SH; Hsu JL; Lin FS Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949 [TBL] [Abstract][Full Text] [Related]
20. Metabolic labeling of model organisms using heavy nitrogen (15N). Gouw JW; Tops BB; Krijgsveld J Methods Mol Biol; 2011; 753():29-42. PubMed ID: 21604113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]