BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16335986)

  • 1. Study of the fragmentation patterns of the phosphate-arginine noncovalent bond.
    Jackson SN; Wang HY; Woods AS
    J Proteome Res; 2005; 4(6):2360-3. PubMed ID: 16335986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate stabilization of intermolecular interactions.
    Jackson SN; Wang HY; Yergey A; Woods AS
    J Proteome Res; 2006 Jan; 5(1):122-6. PubMed ID: 16396502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of phosphorylated residues in peptide-peptide noncovalent complexes formation.
    Jackson SN; Moyer SC; Woods AS
    J Am Soc Mass Spectrom; 2008 Oct; 19(10):1535-41. PubMed ID: 18657435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amazing stability of the arginine-phosphate electrostatic interaction.
    Woods AS; Ferré S
    J Proteome Res; 2005; 4(4):1397-402. PubMed ID: 16083292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of ECD/ETD to identify the site of electrostatic interaction in noncovalent complexes.
    Jackson SN; Dutta S; Woods AS
    J Am Soc Mass Spectrom; 2009 Feb; 20(2):176-9. PubMed ID: 18835725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge state effect on the zwitterion influence on stability of non-covalent interaction of single-stranded DNA with peptides.
    Alves S; Woods A; Tabet JC
    J Mass Spectrom; 2007 Dec; 42(12):1613-22. PubMed ID: 18085569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors.
    Ciruela F; Burgueño J; Casadó V; Canals M; Marcellino D; Goldberg SR; Bader M; Fuxe K; Agnati LF; Lluis C; Franco R; Ferré S; Woods AS
    Anal Chem; 2004 Sep; 76(18):5354-63. PubMed ID: 15362892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histidine, the less interactive cousin of arginine.
    Muller L; Jackson SN; Woods AS
    Eur J Mass Spectrom (Chichester); 2019 Apr; 25(2):212-218. PubMed ID: 31018697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus.
    Li Z; Yalcin T; Cassady CJ
    J Mass Spectrom; 2006 Jul; 41(7):939-49. PubMed ID: 16810639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylated serine and threonine residues promote site-specific fragmentation of singly charged, arginine-containing peptide ions.
    Gehrig PM; Roschitzki B; Rutishauser D; Reiland S; Schlapbach R
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1435-45. PubMed ID: 19353557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociation of protonated peptides containing adjacent arginines.
    Xiao Y; Zu L; Zhang E; Peng J; Huang L; He D; Fang W
    J Biomol Struct Dyn; 2009 Oct; 27(2):209-20. PubMed ID: 19583446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective molecular recognition of arginine by anionic salt bridge formation with bis-phosphate crown ethers: implications for gas phase peptide acidity from adduct dissociation.
    Julian RR; Beauchamp JL
    J Am Soc Mass Spectrom; 2004 Apr; 15(4):616-24. PubMed ID: 15047066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiating alpha- and beta-aspartic acids by electrospray ionization and low-energy tandem mass spectrometry.
    González LJ; Shimizu T; Satomi Y; Betancourt L; Besada V; Padrón G; Orlando R; Shirasawa T; Shimonishi Y; Takao T
    Rapid Commun Mass Spectrom; 2000; 14(22):2092-102. PubMed ID: 11114015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of electrostatic interaction in receptor-receptor heteromerization.
    Woods AS; Ciruela F; Fuxe K; Agnati LF; Lluis C; Franco R; Ferré S
    J Mol Neurosci; 2005; 26(2-3):125-32. PubMed ID: 16012186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the exposure of the phosphate group in modified amino acids and peptides by ion-molecule reactions with triethoxyborane in Fourier transform ion cyclotron resonance mass spectrometry.
    Lanucara F; Fornarini S; Eyers CE; Crestoni ME
    Rapid Commun Mass Spectrom; 2014 May; 28(10):1107-16. PubMed ID: 24711274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mighty arginine, the stable quaternary amines, the powerful aromatics, and the aggressive phosphate: their role in the noncovalent minuet.
    Woods AS
    J Proteome Res; 2004; 3(3):478-84. PubMed ID: 15253429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of isoaspartate in peptides by electrospray tandem mass spectrometry.
    Lehmann WD; Schlosser A; Erben G; Pipkorn R; Bossemeyer D; Kinzel V
    Protein Sci; 2000 Nov; 9(11):2260-8. PubMed ID: 11152137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MALDI/post ionization-ion mobility mass spectrometry of noncovalent complexes of dopamine receptors' epitopes.
    Woods AS; Jackson SN; Lewis EK; Egan T; Muller L; Tabet JC; Schultz JA
    J Proteome Res; 2013 Apr; 12(4):1668-77. PubMed ID: 23469763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the basic residue on the energetics, dynamics, and mechanisms of gas-phase fragmentation of protonated peptides.
    Laskin J; Yang Z; Song T; Lam C; Chu IK
    J Am Chem Soc; 2010 Nov; 132(45):16006-16. PubMed ID: 20977217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of gas-phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation-MS/MS and MS3.
    Palumbo AM; Reid GE
    Anal Chem; 2008 Dec; 80(24):9735-47. PubMed ID: 19012417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.