These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. GeneDig: a web application for accessing genomic and bioinformatics knowledge. Suciu RM; Aydin E; Chen BE BMC Bioinformatics; 2015 Feb; 16(1):67. PubMed ID: 25888373 [TBL] [Abstract][Full Text] [Related]
23. Genomics and proteomics in process development: opportunities and challenges. Gupta P; Lee KH Trends Biotechnol; 2007 Jul; 25(7):324-30. PubMed ID: 17475353 [TBL] [Abstract][Full Text] [Related]
24. Integrative bioinformatics for functional genome annotation: trawling for G protein-coupled receptors. Flower DR; Attwood TK Semin Cell Dev Biol; 2004 Dec; 15(6):693-701. PubMed ID: 15561589 [TBL] [Abstract][Full Text] [Related]
25. Genome resources and comparative analysis tools for cardiovascular research. Liu GE; Adams MD Methods Mol Med; 2006; 128():101-23. PubMed ID: 17071992 [TBL] [Abstract][Full Text] [Related]
26. General approach to identifying potential targets for cancer imaging by integrated bioinformatics analysis of publicly available genomic profiles. Yang Y; Adelstein SJ; Kassis AI Mol Imaging; 2011 Apr; 10(2):123-34. PubMed ID: 21439257 [TBL] [Abstract][Full Text] [Related]
27. The promise of genomics to identify novel therapeutic targets. Orth AP; Batalov S; Perrone M; Chanda SK Expert Opin Ther Targets; 2004 Dec; 8(6):587-96. PubMed ID: 15584864 [TBL] [Abstract][Full Text] [Related]
28. The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Cisek K; Krochmal M; Klein J; Mischak H Nephrol Dial Transplant; 2016 Dec; 31(12):2003-2011. PubMed ID: 26487673 [TBL] [Abstract][Full Text] [Related]
29. Main approaches to target discovery and validation. Sioud M Methods Mol Biol; 2007; 360():1-12. PubMed ID: 17172722 [TBL] [Abstract][Full Text] [Related]
31. MOVE: a multi-level ontology-based visualization and exploration framework for genomic networks. Bosman DW; Blom EJ; Ogao PJ; Kuipers OP; Roerdink JB In Silico Biol; 2007; 7(1):35-59. PubMed ID: 17688427 [TBL] [Abstract][Full Text] [Related]
32. Functional genomics and proteomics--the role of nuclear medicine. Haberkorn U; Altmann A; Eisenhut M Eur J Nucl Med Mol Imaging; 2002 Jan; 29(1):115-32. PubMed ID: 11807614 [TBL] [Abstract][Full Text] [Related]
33. Understanding Membrane Protein Drug Targets in Computational Perspective. Gong J; Chen Y; Pu F; Sun P; He F; Zhang L; Li Y; Ma Z; Wang H Curr Drug Targets; 2019; 20(5):551-564. PubMed ID: 30516106 [TBL] [Abstract][Full Text] [Related]
34. Deductive genomics: a functional approach to identify innovative drug targets in the post-genome era. Stumm G; Russ A; Nehls M Am J Pharmacogenomics; 2002; 2(4):263-71. PubMed ID: 12421097 [TBL] [Abstract][Full Text] [Related]
37. Improved insights into the transcriptomes of the human hookworm Necator americanus--fundamental and biotechnological implications. Rabelo EM; Hall RS; Loukas A; Cooper L; Hu M; Ranganathan S; Gasser RB Biotechnol Adv; 2009; 27(2):122-32. PubMed ID: 18977428 [TBL] [Abstract][Full Text] [Related]
38. The agony and ecstasy of "OMIC" technologies in drug development. Bilello JA Curr Mol Med; 2005 Feb; 5(1):39-52. PubMed ID: 15720269 [TBL] [Abstract][Full Text] [Related]
39. Computational function assignment for potential drug targets: from single genes to cellular systems. Nagl SB Curr Drug Targets; 2002 Oct; 3(5):387-99. PubMed ID: 12182230 [TBL] [Abstract][Full Text] [Related]