These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 16336119)

  • 1. The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties.
    Vogel A; Schilling O; Späth B; Marchfelder A
    Biol Chem; 2005 Dec; 386(12):1253-64. PubMed ID: 16336119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The N-terminal half-domain of the long form of tRNase Z is required for the RNase 65 activity.
    Takaku H; Minagawa A; Takagi M; Nashimoto M
    Nucleic Acids Res; 2004; 32(15):4429-38. PubMed ID: 15317868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two archaeal tRNase Z enzymes: similar but different.
    Späth B; Schubert S; Lieberoth A; Settele F; Schütz S; Fischer S; Marchfelder A
    Arch Microbiol; 2008 Sep; 190(3):301-8. PubMed ID: 18437358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal requirements and phosphodiesterase activity of tRNase Z enzymes.
    Späth B; Settele F; Schilling O; D'Angelo I; Vogel A; Feldmann I; Meyer-Klaucke W; Marchfelder A
    Biochemistry; 2007 Dec; 46(51):14742-50. PubMed ID: 18052196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The flexible arm of tRNase Z is not essential for pre-tRNA binding but affects cleavage site selection.
    Minagawa A; Ishii R; Takaku H; Yokoyama S; Nashimoto M
    J Mol Biol; 2008 Aug; 381(2):289-99. PubMed ID: 18602113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the tRNA 3' processing endoribonuclease tRNase Z from Thermotoga maritima.
    Ishii R; Minagawa A; Takaku H; Takagi M; Nashimoto M; Yokoyama S
    J Biol Chem; 2005 Apr; 280(14):14138-44. PubMed ID: 15701599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z.
    Li de la Sierra-Gallay I; Pellegrini O; Condon C
    Nature; 2005 Feb; 433(7026):657-61. PubMed ID: 15654328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The making of tRNAs and more - RNase P and tRNase Z.
    Hartmann RK; Gössringer M; Späth B; Fischer S; Marchfelder A
    Prog Mol Biol Transl Sci; 2009; 85():319-68. PubMed ID: 19215776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residues in the conserved His domain of fruit fly tRNase Z that function in catalysis are not involved in substrate recognition or binding.
    Zareen N; Yan H; Hopkinson A; Levinger L
    J Mol Biol; 2005 Jul; 350(2):189-99. PubMed ID: 15935379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of the flexible arm of Thermotoga maritima tRNase Z differs from those of homologous enzymes.
    Ishii R; Minagawa A; Takaku H; Takagi M; Nashimoto M; Yokoyama S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Aug; 63(Pt 8):637-41. PubMed ID: 17671357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombinant RNase Z does not recognize CCA as part of the tRNA and its cleavage efficieny is influenced by acceptor stem length.
    Schiffer S; Rösch S; Marchfelder A
    Biol Chem; 2003 Mar; 384(3):333-42. PubMed ID: 12715884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli tRNase Z can shut down growth probably by removing amino acids from aminoacyl-tRNAs.
    Takaku H; Nashimoto M
    Genes Cells; 2008 Nov; 13(11):1087-97. PubMed ID: 18823332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification by Mn2+ rescue of two residues essential for the proton transfer of tRNase Z catalysis.
    Minagawa A; Takaku H; Ishii R; Takagi M; Yokoyama S; Nashimoto M
    Nucleic Acids Res; 2006; 34(13):3811-8. PubMed ID: 16916792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate recognition ability differs among various prokaryotic tRNase Zs.
    Minagawa A; Takaku H; Shibata HS; Ishii R; Takagi M; Yokoyama S; Nashimoto M
    Biochem Biophys Res Commun; 2006 Jun; 345(1):385-93. PubMed ID: 16681995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unstructured RNA is a substrate for tRNase Z.
    Shibata HS; Minagawa A; Takaku H; Takagi M; Nashimoto M
    Biochemistry; 2006 May; 45(17):5486-92. PubMed ID: 16634630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-beta-lactamase superfamily.
    Ishikawa H; Nakagawa N; Kuramitsu S; Masui R
    J Biochem; 2006 Oct; 140(4):535-42. PubMed ID: 16945939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tethered domains and flexible regions in tRNase Z(L), the long form of tRNase Z.
    Wilson C; Ramai D; Serjanov D; Lama N; Levinger L; Chang EJ
    PLoS One; 2013; 8(7):e66942. PubMed ID: 23874404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. tRNase Z: the end is not in sight.
    Späth B; Canino G; Marchfelder A
    Cell Mol Life Sci; 2007 Sep; 64(18):2404-12. PubMed ID: 17599240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. tRNase Z.
    Ceballos M; Vioque A
    Protein Pept Lett; 2007; 14(2):137-45. PubMed ID: 17305600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.