BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16336687)

  • 1. The largest subunit of RNA polymerase II from the Glaucocystophyta: functional constraint and short-branch exclusion in deep eukaryotic phylogeny.
    Stiller JW; Harrell L
    BMC Evol Biol; 2005 Dec; 5():71. PubMed ID: 16336687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyses of RNA Polymerase II genes from free-living protists: phylogeny, long branch attraction, and the eukaryotic big bang.
    Dacks JB; Marinets A; Ford Doolittle W; Cavalier-Smith T; Logsdon JM
    Mol Biol Evol; 2002 Jun; 19(6):830-40. PubMed ID: 12032239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin of red algae: implications for plastid evolution.
    Stiller JW; Hall BD
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4520-5. PubMed ID: 9114022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are red algae plants? A critical evaluation of three key molecular data sets.
    Stiller JW; Riley J; Hall BD
    J Mol Evol; 2001 Jun; 52(6):527-39. PubMed ID: 11443356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes.
    Rodríguez-Ezpeleta N; Brinkmann H; Burey SC; Roure B; Burger G; Löffelhardt W; Bohnert HJ; Philippe H; Lang BF
    Curr Biol; 2005 Jul; 15(14):1325-30. PubMed ID: 16051178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparisons of nuclear-encoded small-subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta.
    Bhattacharya D; Helmchen T; Bibeau C; Melkonian M
    Mol Biol Evol; 1995 May; 12(3):415-20. PubMed ID: 7739383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes.
    Liu YJ; Hodson MC; Hall BD
    BMC Evol Biol; 2006 Sep; 6():74. PubMed ID: 17010206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amitochondriate amoebae and the evolution of DNA-dependent RNA polymerase II.
    Stiller JW; Duffield EC; Hall BD
    Proc Natl Acad Sci U S A; 1998 Sep; 95(20):11769-74. PubMed ID: 9751740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain.
    Yang C; Stiller JW
    Proc Natl Acad Sci U S A; 2014 Apr; 111(16):5920-5. PubMed ID: 24711388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes.
    Maruyama S; Misawa K; Iseki M; Watanabe M; Nozaki H
    BMC Evol Biol; 2008 May; 8():151. PubMed ID: 18485228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher-level phylogeny of Foraminifera inferred from the RNA polymerase II (RPB1) gene.
    Longet D; Pawlowski J
    Eur J Protistol; 2007 Aug; 43(3):171-7. PubMed ID: 17532615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily.
    Engelken J; Brinkmann H; Adamska I
    BMC Evol Biol; 2010 Jul; 10():233. PubMed ID: 20673336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular timeline for the origin of photosynthetic eukaryotes.
    Yoon HS; Hackett JD; Ciniglia C; Pinto G; Bhattacharya D
    Mol Biol Evol; 2004 May; 21(5):809-18. PubMed ID: 14963099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sequence of the largest subunit of RNA polymerase II is a useful marker for inferring seed plant phylogeny.
    Nickerson J; Drouin G
    Mol Phylogenet Evol; 2004 May; 31(2):403-15. PubMed ID: 15062783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular phylogeny of Zygomycota based on EF-1alpha and RPB1 sequences: limitations and utility of alternative markers to rDNA.
    Tanabe Y; Saikawa M; Watanabe MM; Sugiyama J
    Mol Phylogenet Evol; 2004 Feb; 30(2):438-49. PubMed ID: 14715234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the RNA polymerase II C-terminal domain.
    Stiller JW; Hall BD
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6091-6. PubMed ID: 11972039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs.
    Guo Z; Stiller JW
    BMC Genomics; 2004 Sep; 5():69. PubMed ID: 15380029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-branch attraction and the rDNA model of early eukaryotic evolution.
    Stiller JW; Hall BD
    Mol Biol Evol; 1999 Sep; 16(9):1270-9. PubMed ID: 10939894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.