These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16336687)

  • 41. A molecular evolutionary framework for eukaryotic model organisms.
    Sidow A; Thomas WK
    Curr Biol; 1994 Jul; 4(7):596-603. PubMed ID: 7953533
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis.
    Miyagishima SY; Nozaki H; Nishida K; Nishida K; Matsuzaki M; Kuroiwa T
    J Mol Evol; 2004 Mar; 58(3):291-303. PubMed ID: 15045484
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes.
    Deschamps P; Moreira D
    Mol Biol Evol; 2009 Dec; 26(12):2745-53. PubMed ID: 19706725
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular phylogenetic analyses of the mitochondrial ADP-ATP carriers: the Plantae/Fungi/Metazoa trichotomy revisited.
    Löytynoja A; Milinkovitch MC
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10202-7. PubMed ID: 11517311
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The evolutionary position of the rhodophyte Porphyra umbilicalis and the basidiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA.
    Hendriks L; De Baere R; Van de Peer Y; Neefs J; Goris A; De Wachter R
    J Mol Evol; 1991 Feb; 32(2):167-77. PubMed ID: 1901093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular phylogenetic analyses support the monophyly of Hexapoda and suggest the paraphyly of Entognatha.
    Sasaki G; Ishiwata K; Machida R; Miyata T; Su ZH
    BMC Evol Biol; 2013 Oct; 13():236. PubMed ID: 24176097
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor.
    Weber AP; Linka M; Bhattacharya D
    Eukaryot Cell; 2006 Mar; 5(3):609-12. PubMed ID: 16524915
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Concerted gene recruitment in early plant evolution.
    Huang J; Gogarten JP
    Genome Biol; 2008; 9(7):R109. PubMed ID: 18611267
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes.
    Nozaki H; Maruyama S; Matsuzaki M; Nakada T; Kato S; Misawa K
    Mol Phylogenet Evol; 2009 Dec; 53(3):872-80. PubMed ID: 19698794
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The origin of land plants: phylogenetic relationships among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribosomal RNA gene sequences.
    Kranz HD; Miks D; Siegler ML; Capesius I; Sensen CW; Huss VA
    J Mol Evol; 1995 Jul; 41(1):74-84. PubMed ID: 7608991
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rooting the eukaryotic tree with mitochondrial and bacterial proteins.
    Derelle R; Lang BF
    Mol Biol Evol; 2012 Apr; 29(4):1277-89. PubMed ID: 22135192
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analyses of ribosomal RNA sequences from glaucocystophyte cyanelles provide new insights into the evolutionary relationships of plastids.
    Helmchen TA; Bhattacharya D; Melkonian M
    J Mol Evol; 1995 Aug; 41(2):203-10. PubMed ID: 7666450
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The identification of putative RNA polymerase II C-terminal domain associated proteins in red and green algae.
    Yang C; Hager PW; Stiller JW
    Transcription; 2014; 5(5):e970944. PubMed ID: 25483605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Localization and phylogenetic analysis of enzymes related to organellar genome replication in the unicellular rhodophyte Cyanidioschyzon merolae.
    Moriyama T; Tajima N; Sekine K; Sato N
    Genome Biol Evol; 2014 Jan; 6(1):228-37. PubMed ID: 24407855
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The single, ancient origin of chromist plastids.
    Yoon HS; Hackett JD; Pinto G; Bhattacharya D
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15507-12. PubMed ID: 12438651
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phylogenetic relationships and morphological evolution in Lentinus, Polyporellus and Neofavolus, emphasizing southeastern Asian taxa.
    Seelan JS; Justo A; Nagy LG; Grand EA; Redhead SA; Hibbett D
    Mycologia; 2015; 107(3):460-74. PubMed ID: 25661717
    [TBL] [Abstract][Full Text] [Related]  

  • 57. G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story.
    Volná A; Bartas M; Karlický V; Nezval J; Kundrátová K; Pečinka P; Špunda V; Červeň J
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299001
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ["Long-branch Attraction" artifact in phylogenetic reconstruction].
    Li YW; Yu L; Zhang YP
    Yi Chuan; 2007 Jun; 29(6):659-67. PubMed ID: 17650481
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A model for the evolution of the plastid sec apparatus inferred from secY gene phylogeny.
    Vogel H; Fischer S; Valentin K
    Plant Mol Biol; 1996 Nov; 32(4):685-92. PubMed ID: 8980520
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters.
    Rice DW; Palmer JD
    BMC Biol; 2006 Sep; 4():31. PubMed ID: 16956407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.