BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 16337140)

  • 1. Chloroplast biogenesis 92: In situ screening for divinyl chlorophyll(ide) a reductase mutants by spectrofluorometry.
    Kolossov VL; Bohnert HJ; Rebeiz CA
    Anal Biochem; 2006 Jan; 348(2):192-7. PubMed ID: 16337140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroplast biogenesis 72: a [4-vinyl]chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate.
    Parham R; Rebeiz CA
    Anal Biochem; 1995 Oct; 231(1):164-9. PubMed ID: 8678296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplast biogenesis: quantitative determination of monovinyl and divinyl chlorophyll(ide) a and b by spectrofluorometry.
    Wu SM; Mayasich JM; Rebeiz CA
    Anal Biochem; 1989 May; 178(2):294-300. PubMed ID: 2751091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice.
    Wang P; Gao J; Wan C; Zhang F; Xu Z; Huang X; Sun X; Deng X
    Plant Physiol; 2010 Jul; 153(3):994-1003. PubMed ID: 20484022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The major route for chlorophyll synthesis includes [3,8-divinyl]-chlorophyllide a reduction in Arabidopsis thaliana.
    Nagata N; Tanaka R; Tanaka A
    Plant Cell Physiol; 2007 Dec; 48(12):1803-8. PubMed ID: 17991629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloroplast biogenesis 84: solubilization and partial purification of membrane-bound [4-vinyl]chlorophyllide a reductase from etiolated barley leaves.
    Kolossov VL; Rebeiz CA
    Anal Biochem; 2001 Aug; 295(2):214-9. PubMed ID: 11488624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast biogenesis: [4-vinyl] chlorophyllide a reductase is a divinyl chlorophyllide a-specific, NADPH-dependent enzyme.
    Parham R; Rebeiz CA
    Biochemistry; 1992 Sep; 31(36):8460-4. PubMed ID: 1390630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of chlorophyll pigments in the mutant lacking 8-vinyl reductase of green photosynthetic bacterium Chlorobaculum tepidum.
    Mizoguchi T; Harada J; Tamiaki H
    Bioorg Med Chem; 2012 Dec; 20(23):6803-10. PubMed ID: 23098608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloroplast biogenesis 87: Evidence of resonance excitation energy transfer between tetrapyrrole intermediates of the chlorophyll biosynthetic pathway and chlorophyll a.
    Kolossov VL; Kopetz KJ; Rebeiz CA
    Photochem Photobiol; 2003 Aug; 78(2):184-96. PubMed ID: 12945588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroplast biogenesis: quantitative determination of monovinyl and divinyl Mg-protoporphyrins and protochlorophyll(ides) by spectrofluorometry.
    Tripathy BC; Rebeiz CA
    Anal Biochem; 1985 Aug; 149(1):43-61. PubMed ID: 4073485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio.
    Benedetti CE; Arruda P
    Plant Physiol; 2002 Apr; 128(4):1255-63. PubMed ID: 11950974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of a new chlorophyll metabolic pathway driven by the dynamic changes in enzyme promiscuous activity.
    Ito H; Tanaka A
    Plant Cell Physiol; 2014 Mar; 55(3):593-603. PubMed ID: 24399236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroplast biogenesis 89: development of analytical tools for probing the biosynthetic topography of photosynthetic membranes by determination of resonance excitation energy transfer distances separating metabolic tetrapyrrole donors from chlorophyll a acceptors.
    Kopetz KJ; Kolossov VL; Rebeiz CA
    Anal Biochem; 2004 Jun; 329(2):207-19. PubMed ID: 15158479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Arabidopsis CHL27 protein for photosynthesis, chloroplast development and gene expression profiling.
    Bang WY; Jeong IS; Kim DW; Im CH; Ji C; Hwang SM; Kim SW; Son YS; Jeong J; Shiina T; Bahk JD
    Plant Cell Physiol; 2008 Sep; 49(9):1350-63. PubMed ID: 18682427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioengineering of photosynthetic membranes. Requirement of magnesium for the conversion of chlorophyllide a to chlorophyll a during the greening of etiochloroplasts in vitro.
    Daniell H; Rebeiz CA
    Biotechnol Bioeng; 1984 May; 26(5):481-7. PubMed ID: 18553343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species.
    Nagata N; Tanaka R; Satoh S; Tanaka A
    Plant Cell; 2005 Jan; 17(1):233-40. PubMed ID: 15632054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green genes gleaned.
    Beale SI
    Trends Plant Sci; 2005 Jul; 10(7):309-12. PubMed ID: 15951223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic and kinetic characterization of the light-dependent enzyme protochlorophyllide oxidoreductase (POR) using monovinyl and divinyl substrates.
    Heyes DJ; Kruk J; Hunter CN
    Biochem J; 2006 Feb; 394(Pt 1):243-8. PubMed ID: 16274361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro Assays of BciC Showing C132-Demethoxycarbonylase Activity Requisite for Biosynthesis of Chlorosomal Chlorophyll Pigments.
    Teramura M; Harada J; Mizoguchi T; Yamamoto K; Tamiaki H
    Plant Cell Physiol; 2016 May; 57(5):1048-57. PubMed ID: 26936794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divinyl chlorophyll a in the marine eukaryotic protist Alexandrium ostenfeldii (Dinophyceae).
    Rodríguez F; Garrido JL; Sobrino C; Johnsen G; Riobó P; Franco J; Aamot I; Ramilo I; Sanz N; Kremp A
    Environ Microbiol; 2016 Feb; 18(2):627-43. PubMed ID: 26337730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.