These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 16337172)
1. Plant separation: 50 ways to leave your mother. Lewis MW; Leslie ME; Liljegren SJ Curr Opin Plant Biol; 2006 Feb; 9(1):59-65. PubMed ID: 16337172 [TBL] [Abstract][Full Text] [Related]
2. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Wagstaff C; Yang TJ; Stead AD; Buchanan-Wollaston V; Roberts JA Plant J; 2009 Feb; 57(4):690-705. PubMed ID: 18980641 [TBL] [Abstract][Full Text] [Related]
3. The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. McKim SM; Stenvik GE; Butenko MA; Kristiansen W; Cho SK; Hepworth SR; Aalen RB; Haughn GW Development; 2008 Apr; 135(8):1537-46. PubMed ID: 18339677 [TBL] [Abstract][Full Text] [Related]
4. Effect of regulated overexpression of the MADS domain factor AGL15 on flower senescence and fruit maturation. Fang SC; Fernandez DE Plant Physiol; 2002 Sep; 130(1):78-89. PubMed ID: 12226488 [TBL] [Abstract][Full Text] [Related]
5. Ethylene-dependent and -independent pathways controlling floral abscission are revealed to converge using promoter::reporter gene constructs in the ida abscission mutant. Butenko MA; Stenvik GE; Alm V; Saether B; Patterson SE; Aalen RB J Exp Bot; 2006; 57(14):3627-37. PubMed ID: 16990374 [TBL] [Abstract][Full Text] [Related]
6. Ethylene and flower longevity in Alstroemeria: relationship between tepal senescence, abscission and ethylene biosynthesis. Wagstaff C; Chanasut U; Harren FJ; Laarhoven LJ; Thomas B; Rogers HJ; Stead AD J Exp Bot; 2005 Mar; 56(413):1007-16. PubMed ID: 15689338 [TBL] [Abstract][Full Text] [Related]
7. Signaling and transcriptional control of reproductive development in Arabidopsis. Ge X; Chang F; Ma H Curr Biol; 2010 Nov; 20(22):R988-97. PubMed ID: 21093795 [TBL] [Abstract][Full Text] [Related]
8. Genetic and genomic analysis of legume flowers and seeds. Domoney C; Duc G; Ellis TH; Ferrándiz C; Firnhaber C; Gallardo K; Hofer J; Kopka J; Küster H; Madueño F; Munier-Jolain NG; Mayer K; Thompson R; Udvardi M; Salon C Curr Opin Plant Biol; 2006 Apr; 9(2):133-41. PubMed ID: 16480914 [TBL] [Abstract][Full Text] [Related]
9. Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Poupin MJ; Federici F; Medina C; Matus JT; Timmermann T; Arce-Johnson P Gene; 2007 Dec; 404(1-2):10-24. PubMed ID: 17920788 [TBL] [Abstract][Full Text] [Related]
10. Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system. Battaglia R; Brambilla V; Colombo L; Stuitje AR; Kater MM Mech Dev; 2006 Apr; 123(4):267-76. PubMed ID: 16515858 [TBL] [Abstract][Full Text] [Related]
11. Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ. Yadav SR; Prasad K; Vijayraghavan U Genetics; 2007 May; 176(1):283-94. PubMed ID: 17409064 [TBL] [Abstract][Full Text] [Related]
12. A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Park KI; Ishikawa N; Morita Y; Choi JD; Hoshino A; Iida S Plant J; 2007 Feb; 49(4):641-54. PubMed ID: 17270013 [TBL] [Abstract][Full Text] [Related]
13. A genetic framework for fruit patterning in Arabidopsis thaliana. Dinneny JR; Weigel D; Yanofsky MF Development; 2005 Nov; 132(21):4687-96. PubMed ID: 16192305 [TBL] [Abstract][Full Text] [Related]
14. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Schruff MC; Spielman M; Tiwari S; Adams S; Fenby N; Scott RJ Development; 2006 Jan; 133(2):251-61. PubMed ID: 16339187 [TBL] [Abstract][Full Text] [Related]
15. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. Young LW; Wilen RW; Bonham-Smith PC J Exp Bot; 2004 Feb; 55(396):485-95. PubMed ID: 14739270 [TBL] [Abstract][Full Text] [Related]
16. Expression of cinnamyl alcohol dehydrogenases and their putative homologues during Arabidopsis thaliana growth and development: lessons for database annotations? Kim SJ; Kim KW; Cho MH; Franceschi VR; Davin LB; Lewis NG Phytochemistry; 2007 Jul; 68(14):1957-74. PubMed ID: 17467016 [TBL] [Abstract][Full Text] [Related]
17. Pollination biology and the impact of floral display, pollen donors, and distyly on seed production in Arcytophyllum lavarum (Rubiaceae). García-Robledo C; Mora F Plant Biol (Stuttg); 2007 Jul; 9(4):453-61. PubMed ID: 17401810 [TBL] [Abstract][Full Text] [Related]
18. Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Zhu J; Chen H; Li H; Gao JF; Jiang H; Wang C; Guan YF; Yang ZN Plant J; 2008 Jul; 55(2):266-77. PubMed ID: 18397379 [TBL] [Abstract][Full Text] [Related]
19. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Wang HW; Zhang B; Hao YJ; Huang J; Tian AG; Liao Y; Zhang JS; Chen SY Plant J; 2007 Nov; 52(4):716-29. PubMed ID: 17877700 [TBL] [Abstract][Full Text] [Related]
20. Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana. González-Carranza ZH; Elliott KA; Roberts JA J Exp Bot; 2007; 58(13):3719-30. PubMed ID: 17928369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]