These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 16337230)
1. Saccharomyces cerevisiae Ste50 binds the MAPKKK Ste11 through a head-to-tail SAM domain interaction. Kwan JJ; Warner N; Maini J; Chan Tung KW; Zakaria H; Pawson T; Donaldson LW J Mol Biol; 2006 Feb; 356(1):142-54. PubMed ID: 16337230 [TBL] [Abstract][Full Text] [Related]
2. Solution structure of the dimeric SAM domain of MAPKKK Ste11 and its interactions with the adaptor protein Ste50 from the budding yeast: implications for Ste11 activation and signal transmission through the Ste50-Ste11 complex. Bhattacharjya S; Xu P; Gingras R; Shaykhutdinov R; Wu C; Whiteway M; Ni F J Mol Biol; 2004 Dec; 344(4):1071-87. PubMed ID: 15544813 [TBL] [Abstract][Full Text] [Related]
3. The solution structure of the S.cerevisiae Ste11 MAPKKK SAM domain and its partnership with Ste50. Kwan JJ; Warner N; Pawson T; Donaldson LW J Mol Biol; 2004 Sep; 342(2):681-93. PubMed ID: 15327964 [TBL] [Abstract][Full Text] [Related]
4. Equilibrium unfolding of the dimeric SAM domain of MAPKKK Ste11 from the budding yeast: role of the interfacial residues in structural stability and binding. Bhunia A; Domadia PN; Xu X; Gingras R; Ni F; Bhattacharjya S Biochemistry; 2008 Jan; 47(2):651-9. PubMed ID: 18092817 [TBL] [Abstract][Full Text] [Related]
5. NMR structural studies of the Ste11 SAM domain in the dodecyl phosphocholine micelle. Bhunia A; Domadia PN; Mohanram H; Bhattacharjya S Proteins; 2009 Feb; 74(2):328-43. PubMed ID: 18618697 [TBL] [Abstract][Full Text] [Related]
6. Polymerization of the SAM domain of MAPKKK Ste11 from the budding yeast: implications for efficient signaling through the MAPK cascades. Bhattacharjya S; Xu P; Chakrapani M; Johnston L; Ni F Protein Sci; 2005 Mar; 14(3):828-35. PubMed ID: 15689513 [TBL] [Abstract][Full Text] [Related]
7. The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane in the filamentous growth signaling pathway of the yeast Saccharomyces cerevisiae. Truckses DM; Bloomekatz JE; Thorner J Mol Cell Biol; 2006 Feb; 26(3):912-28. PubMed ID: 16428446 [TBL] [Abstract][Full Text] [Related]
8. The role of adaptor protein Ste50-dependent regulation of the MAPKKK Ste11 in multiple signalling pathways of yeast. Ramezani-Rad M Curr Genet; 2003 Jun; 43(3):161-70. PubMed ID: 12764668 [TBL] [Abstract][Full Text] [Related]
9. SAM domain-based protein oligomerization observed by live-cell fluorescence fluctuation spectroscopy. Slaughter BD; Huff JM; Wiegraebe W; Schwartz JW; Li R PLoS One; 2008 Apr; 3(4):e1931. PubMed ID: 18431466 [TBL] [Abstract][Full Text] [Related]
10. Structure of the sterile alpha motif (SAM) domain of the Saccharomyces cerevisiae mitogen-activated protein kinase pathway-modulating protein STE50 and analysis of its interaction with the STE11 SAM. Grimshaw SJ; Mott HR; Stott KM; Nielsen PR; Evetts KA; Hopkins LJ; Nietlispach D; Owen D J Biol Chem; 2004 Jan; 279(3):2192-201. PubMed ID: 14573615 [TBL] [Abstract][Full Text] [Related]
11. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. Tatebayashi K; Yamamoto K; Tanaka K; Tomida T; Maruoka T; Kasukawa E; Saito H EMBO J; 2006 Jul; 25(13):3033-44. PubMed ID: 16778768 [TBL] [Abstract][Full Text] [Related]
12. Mutations in the SAM domain of STE50 differentially influence the MAPK-mediated pathways for mating, filamentous growth and osmotolerance in Saccharomyces cerevisiae. Jansen G; Bühring F; Hollenberg CP; Ramezani Rad M Mol Genet Genomics; 2001 Mar; 265(1):102-17. PubMed ID: 11370856 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the near native conformational states of the SAM domain of Ste11 protein by NMR spectroscopy. Gupta S; Bhattacharjya S Proteins; 2014 Nov; 82(11):2957-69. PubMed ID: 25066357 [TBL] [Abstract][Full Text] [Related]
14. Salt Dependence Conformational Stability of the Dimeric SAM Domain of MAPKKK Ste11 from Budding Yeast: A Native-State H/D Exchange NMR Study. Bhunia A; Ilyas H; Bhattacharjya S Biochemistry; 2020 Aug; 59(31):2849-2858. PubMed ID: 32667811 [TBL] [Abstract][Full Text] [Related]
15. SAM domains can utilize similar surfaces for the formation of polymers and closed oligomers. Ramachander R; Bowie JU J Mol Biol; 2004 Oct; 342(5):1353-8. PubMed ID: 15364564 [TBL] [Abstract][Full Text] [Related]
16. Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 scaffold and the Opy2 membrane anchor. Yamamoto K; Tatebayashi K; Tanaka K; Saito H Mol Cell; 2010 Oct; 40(1):87-98. PubMed ID: 20932477 [TBL] [Abstract][Full Text] [Related]
17. Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Posas F; Witten EA; Saito H Mol Cell Biol; 1998 Oct; 18(10):5788-96. PubMed ID: 9742096 [TBL] [Abstract][Full Text] [Related]
18. Ubc2, an ortholog of the yeast Ste50p adaptor, possesses a basidiomycete-specific carboxy terminal extension essential for pathogenicity independent of pheromone response. Klosterman SJ; Martinez-Espinoza AD; Andrews DL; Seay JR; Gold SE Mol Plant Microbe Interact; 2008 Jan; 21(1):110-21. PubMed ID: 18052888 [TBL] [Abstract][Full Text] [Related]
19. Msb2 is a Ste11 membrane concentrator required for full activation of the HOG pathway. Zuzuarregui A; Li T; Friedmann C; Ammerer G; Alepuz P Biochim Biophys Acta; 2015 Jun; 1849(6):722-30. PubMed ID: 25689021 [TBL] [Abstract][Full Text] [Related]
20. Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway. Zarrinpar A; Bhattacharyya RP; Nittler MP; Lim WA Mol Cell; 2004 Jun; 14(6):825-32. PubMed ID: 15200959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]