These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 16337300)
1. Cloning and functional expression of glucose dehydrogenase complex of Burkholderia cepacia in Escherichia coli. Tsuya T; Ferri S; Fujikawa M; Yamaoka H; Sode K J Biotechnol; 2006 May; 123(2):127-36. PubMed ID: 16337300 [TBL] [Abstract][Full Text] [Related]
2. Essential role of the small subunit of thermostable glucose dehydrogenase from Burkholderia cepacia. Yamaoka H; Ferri S; Fujikawa M; Sode K Biotechnol Lett; 2004 Nov; 26(22):1757-61. PubMed ID: 15604831 [TBL] [Abstract][Full Text] [Related]
3. Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia. Yamaoka H; Yamashita Y; Ferri S; Sode K Biotechnol Lett; 2008 Nov; 30(11):1967-72. PubMed ID: 18581061 [TBL] [Abstract][Full Text] [Related]
4. Cloning and expression of the gene encoding catalytic subunit of thermostable glucose dehydrogenase from Burkholderia cepacia in Escherichia coli. Inose K; Fujikawa M; Yamazaki T; Kojima K; Sode K Biochim Biophys Acta; 2003 Feb; 1645(2):133-8. PubMed ID: 12573242 [TBL] [Abstract][Full Text] [Related]
5. Biofuel cell system employing thermostable glucose dehydrogenase. Okuda-Shimazaki J; Kakehi N; Yamazaki T; Tomiyama M; Sode K Biotechnol Lett; 2008 Oct; 30(10):1753-8. PubMed ID: 18516502 [TBL] [Abstract][Full Text] [Related]
6. High performance enzyme fuel cells using a genetically expressed FAD-dependent glucose dehydrogenase α-subunit of Burkholderia cepacia immobilized in a carbon nanotube electrode for low glucose conditions. Fapyane D; Lee SJ; Kang SH; Lim DH; Cho KK; Nam TH; Ahn JP; Ahn JH; Kim SW; Chang IS Phys Chem Chem Phys; 2013 Jun; 15(24):9508-12. PubMed ID: 23695009 [TBL] [Abstract][Full Text] [Related]
7. Cloning and overexpression of the old yellow enzyme gene of Candida macedoniensis, and its application to the production of a chiral compound. Kataoka M; Kotaka A; Thiwthong R; Wada M; Nakamori S; Shimizu S J Biotechnol; 2004 Oct; 114(1-2):1-9. PubMed ID: 15464593 [TBL] [Abstract][Full Text] [Related]
8. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase. Yamashita Y; Ferri S; Huynh ML; Shimizu H; Yamaoka H; Sode K Enzyme Microb Technol; 2013 Feb; 52(2):123-8. PubMed ID: 23273282 [TBL] [Abstract][Full Text] [Related]
9. Molecular cloning and expression of perhydrolase genes from Pseudomonas aeruginosa and Burkholderia cepacia in Escherichia coli. Song JK; Ahn HJ; Kim HS; Song BK Biotechnol Lett; 2006 Jun; 28(12):849-56. PubMed ID: 16786268 [TBL] [Abstract][Full Text] [Related]
10. Cloning and expression of a novel esterase gene cpoA from Burkholderia cepacia. Kim CH; Lee JH; Heo JH; Kwon OS; Kang HA; Rhee SK J Appl Microbiol; 2004; 96(6):1306-16. PubMed ID: 15139923 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a thermostable glucose dehydrogenase with strict substrate specificity from a hyperthermophilic archaeon Thermoproteus sp. GDH-1. Aiba H; Nishiya Y; Azuma M; Yokooji Y; Atomi H; Imanaka T Biosci Biotechnol Biochem; 2015; 79(7):1094-102. PubMed ID: 25746627 [TBL] [Abstract][Full Text] [Related]
12. Biosynthesis of (S)-4-chloro-3-hydroxybutanoate ethyl using Escherichia coli co-expressing a novel NADH-dependent carbonyl reductase and a glucose dehydrogenase. Ye Q; Cao H; Mi L; Yan M; Wang Y; He Q; Li J; Xu L; Chen Y; Xiong J; Ouyang P; Ying H Bioresour Technol; 2010 Nov; 101(22):8911-4. PubMed ID: 20630744 [TBL] [Abstract][Full Text] [Related]
13. Engineering of recombinant E. coli cells co-expressing P450pyrTM monooxygenase and glucose dehydrogenase for highly regio- and stereoselective hydroxylation of alicycles with cofactor recycling. Pham SQ; Gao P; Li Z Biotechnol Bioeng; 2013 Feb; 110(2):363-73. PubMed ID: 22886996 [TBL] [Abstract][Full Text] [Related]
14. A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell. Kakehi N; Yamazaki T; Tsugawa W; Sode K Biosens Bioelectron; 2007 Apr; 22(9-10):2250-5. PubMed ID: 17166711 [TBL] [Abstract][Full Text] [Related]
15. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes. Shiota M; Yamazaki T; Yoshimatsu K; Kojima K; Tsugawa W; Ferri S; Sode K Bioelectrochemistry; 2016 Dec; 112():178-83. PubMed ID: 26951961 [TBL] [Abstract][Full Text] [Related]
16. Isolation, heterologous expression and characterization of an endo-polygalacturonase produced by the phytopathogen Burkholderia cepacia. Massa C; Degrassi G; Devescovi G; Venturi V; Lamba D Protein Expr Purif; 2007 Aug; 54(2):300-8. PubMed ID: 17493828 [TBL] [Abstract][Full Text] [Related]
17. Molecular cloning and characterization of NAD(+)-dependent xylitol dehydrogenase from Candida tropicalis ATCC 20913. Ko BS; Jung HC; Kim JH Biotechnol Prog; 2006; 22(6):1708-14. PubMed ID: 17137322 [TBL] [Abstract][Full Text] [Related]
18. Effects of N-/C-Terminal Extra Tags on the Optimal Reaction Conditions, Activity, and Quaternary Structure of Hyun J; Abigail M; Choo JW; Ryu J; Kim HK J Microbiol Biotechnol; 2016 Oct; 26(10):1708-1716. PubMed ID: 27363470 [TBL] [Abstract][Full Text] [Related]
19. Use of ribosomal promoters from Burkholderia cenocepacia and Burkholderia cepacia for improved expression of transporter protein in Escherichia coli. Yu M; Tsang JS Protein Expr Purif; 2006 Oct; 49(2):219-27. PubMed ID: 16737826 [TBL] [Abstract][Full Text] [Related]
20. Molecular cloning and characterization of thermostable beta-lactam acylase with broad substrate specificity from Bacillus badius. Rajendhran J; Gunasekaran P J Biosci Bioeng; 2007 May; 103(5):457-63. PubMed ID: 17609162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]