These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 1633749)

  • 1. The neural retina of the frog contributes a slow cornea-positive potential to the electroretinogram.
    Hanitzsch R; Zeumer C; Mättig WU
    Doc Ophthalmol; 1992; 79(4):391-7. PubMed ID: 1633749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The c-wave of the electroretinogram possesses a third component from the proximal retina.
    Zeumer C; Hanitzsch R; Mättig WU
    Vision Res; 1994 Oct; 34(20):2673-8. PubMed ID: 7975304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between the slow cornea-negative PIII component of the ERG and potassium changes in the isolated rabbit retina.
    Hanitzsch R
    Doc Ophthalmol; 1993; 84(3):267-78. PubMed ID: 7907013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-evoked increases in [K+]o in proximal portion of the dark-adapted cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1989 Jun; 61(6):1233-43. PubMed ID: 2746323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular K+ activity changes related to electroretinogram components. II. Rabbit (E-type) retinas.
    Dick E; Miller RF; Bloomfield S
    J Gen Physiol; 1985 Jun; 85(6):911-31. PubMed ID: 2410539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. M-wave of the toad electroretinogram.
    Katz BJ; Wen R; Zheng JB; Xu ZA; Oakley B
    J Neurophysiol; 1991 Dec; 66(6):1927-40. PubMed ID: 1812226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The time course of the light-induced extracellular potassium change around receptors and at the vitreal surface compared with the time course of slow PIII wave in the isolated rabbit retina.
    Hanitzsch R
    Physiol Bohemoslov; 1988; 37(3):227-33. PubMed ID: 2975791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adrenergic effects on the corneal and intraretinal direct-current electroretinogram and on the standing potential of albino rabbit eyes.
    Jarkman S; Bragadóttir R
    Doc Ophthalmol; 1995; 89(3):251-66. PubMed ID: 7555593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Slow P III component of the electroretinogram resulting from the interaction of photoreceptors and cells of Müller in the retina].
    Dmitriev AV; Bykov KA; Skachkov SN
    Fiziol Zh SSSR Im I M Sechenova; 1985 Apr; 71(4):446-52. PubMed ID: 3873364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular K+ activity changes related to electroretinogram components. I. Amphibian (I-type) retinas.
    Dick E; Miller RF
    J Gen Physiol; 1985 Jun; 85(6):885-909. PubMed ID: 3926945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraretinal analysis of the threshold dark-adapted ERG of cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1989 Jun; 61(6):1221-32. PubMed ID: 2746322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram.
    Oakley B; Green DG
    J Neurophysiol; 1976 Sep; 39(5):1117-33. PubMed ID: 1086346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraretinal analysis of electroretinogram with K+ microelectrodes during acute intraocular pressure elevation.
    Masai H; Hiroi K; Yamamoto F; Honda Y
    Doc Ophthalmol; 1995-1996; 91(2):129-39. PubMed ID: 8813492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraretinal study of cat electroretinogram during retinal ischemia-reperfusion with extracellular K+ concentration microelectrodes.
    Hiroi K; Yamamoto F; Honda Y
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):656-63. PubMed ID: 8113017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of the electroretinographic slow PIII component by injection of K+ -free Ringer's solution in the frog retina.
    Yanagida T
    Doc Ophthalmol; 1991; 76(4):395-400. PubMed ID: 1935547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminar separation of light-evoked K+ flux and field potentials in frog retina.
    Karwoski J; Criswell MH; Proenza LM
    Invest Ophthalmol Vis Sci; 1978 Jul; 17(7):678-82. PubMed ID: 669896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two neuronal retinal components of the electroretinogram c-wave.
    Hanitzsch R; Lichtenberger T
    Doc Ophthalmol; 1997-1998; 94(3):275-85. PubMed ID: 9682996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of PhXA41, a prostaglandin analogue, and PGF2 alpha on the corneal and intraretinal d.c. electroretinogram (ERG) of the albino rabbit eye.
    Bragadóttir R; Jarkman S
    Curr Eye Res; 1995 Dec; 14(12):1073-80. PubMed ID: 8974836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin of slow PIII in frog retina: current source density analysis in the eyecup and isolated retina.
    Xu X; Karwoski CJ
    Vis Neurosci; 1997; 14(5):827-33. PubMed ID: 9364721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of negative potentials in the light-adapted ERG of cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1990 Jun; 63(6):1333-46. PubMed ID: 2358881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.