These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields. Espin MJ; Delgado AV; Płocharski J Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029 [TBL] [Abstract][Full Text] [Related]
6. Structure of electrorheological fluids under an electric field and a shear flow: experiment and computer simulation. Cao JG; Huang JP; Zhou LW J Phys Chem B; 2006 Jun; 110(24):11635-9. PubMed ID: 16800457 [TBL] [Abstract][Full Text] [Related]
7. Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields. Shaver J; Parra-Vasquez AN; Hansel S; Portugall O; Mielke CH; von Ortenberg M; Hauge RH; Pasquali M; Kono J ACS Nano; 2009 Jan; 3(1):131-8. PubMed ID: 19206259 [TBL] [Abstract][Full Text] [Related]
8. Electrorheological properties and microstructure of silica suspensions. Gehin C; Persello J; Charraut D; Cabane B J Colloid Interface Sci; 2004 May; 273(2):658-67. PubMed ID: 15082407 [TBL] [Abstract][Full Text] [Related]
9. Apparent 'electrocatalytic' activity of multiwalled carbon nanotubes in the detection of the anaesthetic halothane: occluded copper nanoparticles. Dai X; Wildgoose GG; Compton RG Analyst; 2006 Aug; 131(8):901-6. PubMed ID: 17028723 [TBL] [Abstract][Full Text] [Related]
10. Self-assembly of ordered nanowires in biological suspensions of single-wall carbon nanotubes. Hobbie EK; Fagan JA; Becker ML; Hudson SD; Fakhri N; Pasquali M ACS Nano; 2009 Jan; 3(1):189-96. PubMed ID: 19206266 [TBL] [Abstract][Full Text] [Related]
11. Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field. Ko YG; Lee HJ; Chun YJ; Choi US; Yoo KP ACS Appl Mater Interfaces; 2013 Feb; 5(3):1122-30. PubMed ID: 23336370 [TBL] [Abstract][Full Text] [Related]
12. Electrorheological properties of polyaniline suspensions: field-induced liquid to solid transition and residual gel structure. Hiamtup P; Sirivat A; Jamieson AM J Colloid Interface Sci; 2006 Mar; 295(1):270-8. PubMed ID: 16168424 [TBL] [Abstract][Full Text] [Related]
13. Electrorheological suspensions of laponite in oil: rheometry studies. Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and electrorheological behavior of sterically stabilized polypyrrole-silica-methylcellulose nanocomposite suspension. Yoon DJ; Kim YD J Colloid Interface Sci; 2006 Nov; 303(2):573-8. PubMed ID: 16919288 [TBL] [Abstract][Full Text] [Related]
16. Negative electrorheological behavior in suspensions of inorganic particles. Ramos-Tejada MM; Arroyo FJ; Delgado AV Langmuir; 2010 Nov; 26(22):16833-40. PubMed ID: 20939556 [TBL] [Abstract][Full Text] [Related]
17. Carbon nanotube--conducting-polymer composite nanowires. Wang J; Dai J; Yarlagadda T Langmuir; 2005 Jan; 21(1):9-12. PubMed ID: 15620278 [TBL] [Abstract][Full Text] [Related]
18. Electroanalysis using macro-, micro-, and nanochemical architectures on electrode surfaces. Bulk surface modification of glassy carbon microspheres with gold nanoparticles and their electrical wiring using carbon nanotubes. Dai X; Wildgoose GG; Salter C; Crossley A; Compton RG Anal Chem; 2006 Sep; 78(17):6102-8. PubMed ID: 16944890 [TBL] [Abstract][Full Text] [Related]
19. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline. Lu J; Zhao X J Colloid Interface Sci; 2004 May; 273(2):651-7. PubMed ID: 15082406 [TBL] [Abstract][Full Text] [Related]
20. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties. Zhang X; Lü Z; Wen M; Liang H; Zhang J; Liu Z J Phys Chem B; 2005 Jan; 109(3):1101-7. PubMed ID: 16851066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]