These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 16337731)

  • 1. Microtubule self-organisation by reaction-diffusion processes in miniature cell-sized containers and phospholipid vesicles.
    Cortès S; Glade N; Chartier I; Tabony J
    Biophys Chem; 2006 Apr; 120(3):168-77. PubMed ID: 16337731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brief exposure to high magnetic fields determines microtubule self-organisation by reaction-diffusion processes.
    Glade N; Tabony J
    Biophys Chem; 2005 May; 115(1):29-35. PubMed ID: 15848281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of weightlessness on colloidal particle transport and segregation in self-organising microtubule preparations.
    Tabony J; Rigotti N; Glade N; Cortès S
    Biophys Chem; 2007 May; 127(3):172-80. PubMed ID: 17321031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles.
    Glade N; Demongeot J; Tabony J
    BMC Cell Biol; 2004 Jun; 5():23. PubMed ID: 15176973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground-based methods reproduce space-flight experiments and show that weak vibrations trigger microtubule self-organisation.
    Glade N; Beaugnon E; Tabony J
    Biophys Chem; 2006 Apr; 121(1):1-6. PubMed ID: 16380203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the nature and shape of tubulin trails: implications on microtubule self-organization.
    Glade N
    Acta Biotheor; 2012 Jun; 60(1-2):55-82. PubMed ID: 22331498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulations of microtubule self-organisation by reaction and diffusion.
    Glade N; Demongeot J; Tabony J
    Acta Biotheor; 2002; 50(4):239-68. PubMed ID: 12675530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule self-organisation and its gravity dependence.
    Tabony J; Glade N; Papaseit C; Demongeot J
    Adv Space Biol Med; 2002; 8():19-58. PubMed ID: 12951692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation and growth of microtubules from gamma-tubulin-functionalized gold surfaces.
    Yang Y; Deymier PA; Wang L; Guzman R; Hoying JB; McLaughlin HJ; Smith SD; Jongewaard IN
    Biotechnol Prog; 2006; 22(1):303-12. PubMed ID: 16454524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubule self-organisation depends upon gravity.
    Tabony J; Pochon N; Papaseit C
    Adv Space Res; 2001; 28(4):529-35. PubMed ID: 11799984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of reaction-diffusion simulations with experiment in self-organised microtubule solutions.
    Glade N; Demongeot J; Tabony J
    C R Biol; 2002 Apr; 325(4):283-94. PubMed ID: 12161908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The natural naphthoquinone plumbagin exhibits antiproliferative activity and disrupts the microtubule network through tubulin binding.
    Acharya BR; Bhattacharyya B; Chakrabarti G
    Biochemistry; 2008 Jul; 47(30):7838-45. PubMed ID: 18597479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly dynamics of microtubules at molecular resolution.
    Kerssemakers JW; Munteanu EL; Laan L; Noetzel TL; Janson ME; Dogterom M
    Nature; 2006 Aug; 442(7103):709-12. PubMed ID: 16799566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial structures in microtubular solutions requiring a sustained energy source.
    Tabony J; Job D
    Nature; 1990 Aug; 346(6283):448-51. PubMed ID: 2377206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives.
    Nogales E; Wang HW
    Curr Opin Struct Biol; 2006 Apr; 16(2):221-9. PubMed ID: 16549346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of microtubule polymerization in vitro and during the cell cycle in Xenopus egg extracts.
    Budde PP; Desai A; Heald R
    Methods; 2006 Jan; 38(1):29-34. PubMed ID: 16343934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip extrusion of lipid vesicles and tubes through microsized apertures.
    Dittrich PS; Heule M; Renaud P; Manz A
    Lab Chip; 2006 Apr; 6(4):488-93. PubMed ID: 16572210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule bundling and nested buckling drive stripe formation in polymerizing tubulin solutions.
    Liu Y; Guo Y; Valles JM; Tang JX
    Proc Natl Acad Sci U S A; 2006 Jul; 103(28):10654-9. PubMed ID: 16818889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parkin-co-regulated gene (PACRG) product interacts with tubulin and microtubules.
    Ikeda T
    FEBS Lett; 2008 Apr; 582(10):1413-8. PubMed ID: 18387367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The spatial organization of centrosome-attached and free microtubules in 3T3 fibroblasts].
    Alieva IB; Borisy GG; Vorob'ev IA
    Tsitologiia; 2008; 50(11):936-46. PubMed ID: 19140339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.