These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 1633788)

  • 41. The loads on the lumbar spine during work at an assembly line. The risks for fatigue injuries of vertebral bodies.
    Magnusson M; Granqvist M; Jonson R; Lindell V; Lundberg U; Wallin L; Hansson T
    Spine (Phila Pa 1976); 1990 Aug; 15(8):774-9. PubMed ID: 2237627
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The evaluation of a practical biomechanical model estimating lumbar moments in occupational activities.
    de Looze MP; Kingma I; Thunnissen W; van Wijk MJ; Toussaint HM
    Ergonomics; 1994 Sep; 37(9):1495-502. PubMed ID: 7957027
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Risk factors for lumbar intervertebral disc herniation in Chinese population: a case-control study.
    Zhang YG; Sun Z; Zhang Z; Liu J; Guo X
    Spine (Phila Pa 1976); 2009 Dec; 34(25):E918-22. PubMed ID: 19940721
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spine loading as a function of lift frequency, exposure duration, and work experience.
    Marras WS; Parakkat J; Chany AM; Yang G; Burr D; Lavender SA
    Clin Biomech (Bristol, Avon); 2006 May; 21(4):345-52. PubMed ID: 16310299
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic lifting capacity: the relationship between peak force and weight as an indicator of effort.
    Hazard RG; Reeves V; Weisman G; Fleming BC; Pope MH
    J Spinal Disord; 1991 Mar; 4(1):63-7. PubMed ID: 1839668
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficacy of adjusting working height and mechanizing of transport on physical work demands and local discomfort in construction work.
    van der Molen HF; Grouwstra R; Kuijer PP; Sluiter JK; Frings-Dresen MH
    Ergonomics; 2004 Jun; 47(7):772-83. PubMed ID: 15204287
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of work-rest schedules with respect to the effects of postural workload in standing work.
    Van Dieën JH; Oude Vrielink HH
    Ergonomics; 1998 Dec; 41(12):1832-44. PubMed ID: 9857841
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomechanical comparison of anterior lumbar interbody fusion and transforaminal lumbar interbody fusion.
    Ploumis A; Wu C; Fischer G; Mehbod AA; Wu W; Faundez A; Transfeldt EE
    J Spinal Disord Tech; 2008 Apr; 21(2):120-5. PubMed ID: 18391717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Etiopathogenetic factors of degenerative diseases of the spine and the effects of exertion and working conditions].
    Polakowska B
    Med Pr; 1992; 43(2):153-8. PubMed ID: 1435250
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spinal compression tolerance limits for the design of manual material handling operations in the workplace.
    Genaidy AM; Waly SM; Khalil TM; Hidalgo J
    Ergonomics; 1993 Apr; 36(4):415-34. PubMed ID: 8472689
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Maximum acceptable work loads for repetitive lifting tasks. An experimental evaluation of psychophysical criteria.
    Gamberale F
    Scand J Work Environ Health; 1988; 14 Suppl 1():85-7. PubMed ID: 3393892
    [No Abstract]   [Full Text] [Related]  

  • 52. The hybrid assisted limb (HAL) for Care Support, a motion assisting robot providing exoskeletal lumbar support, can potentially reduce lumbar load in repetitive snow-shoveling movements.
    Miura K; Kadone H; Koda M; Abe T; Endo H; Murakami H; Doita M; Kumagai H; Nagashima K; Fujii K; Noguchi H; Funayama T; Kawamoto H; Sankai Y; Yamazaki M
    J Clin Neurosci; 2018 Mar; 49():83-86. PubMed ID: 29254733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A psychophysical study of the effects of load and frequency upon selection of workload in repetitive lifting.
    Nicholson LM; Legg SJ
    Ergonomics; 1986 Jul; 29(7):903-11. PubMed ID: 3743545
    [No Abstract]   [Full Text] [Related]  

  • 54. Predicting physiological capacity of human load carriage - a review.
    Drain J; Billing D; Neesham-Smith D; Aisbett B
    Appl Ergon; 2016 Jan; 52():85-94. PubMed ID: 26360198
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A personal perspective on aging and productivity, with particular reference to physically demanding work.
    Shephard RJ
    Ergonomics; 1995 Apr; 38(4):617-36. PubMed ID: 7729393
    [No Abstract]   [Full Text] [Related]  

  • 56. Psychophysical acceptability as a constraint in manual working capacity.
    Snook SH
    Ergonomics; 1985 Jan; 28(1):331-5. PubMed ID: 3158516
    [No Abstract]   [Full Text] [Related]  

  • 57. Psychophysical considerations in permissible loads.
    Snook SH
    Ergonomics; 1985 Jan; 28(1):327-30. PubMed ID: 3158515
    [No Abstract]   [Full Text] [Related]  

  • 58. The measurement of effort.
    Fleishman EA; Gebhardt DL; Hogan JC
    Ergonomics; 1984 Sep; 27(9):947-54. PubMed ID: 6499828
    [No Abstract]   [Full Text] [Related]  

  • 59. Optimal rate of work during load transportation on the head and by yoke.
    Balogun JA
    Ind Health; 1986; 24(2):75-86. PubMed ID: 3759511
    [No Abstract]   [Full Text] [Related]  

  • 60. Psychophysical modelling for combined manual materials-handling activities.
    Jiang BC; Smith JL; Ayoub MM
    Ergonomics; 1986 Oct; 29(10):1173-90. PubMed ID: 3780659
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.