These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1633811)

  • 21. Infrared monitoring of interlayer water in stacks of purple membranes.
    Dioumaev AK; Lanyi JK
    Photochem Photobiol; 2009; 85(2):598-608. PubMed ID: 19192202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor.
    Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ
    Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacteriorhodopsin thermal stability: influence of bound cations and lipids on the intrinsic protein fluorescence.
    Tuparev N; Dobrikova A; Taneva S; Lazarova T
    Z Naturforsch C J Biosci; 2000; 55(5-6):355-60. PubMed ID: 10928546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics study of the proton pump cycle of bacteriorhodopsin.
    Zhou F; Windemuth A; Schulten K
    Biochemistry; 1993 Mar; 32(9):2291-306. PubMed ID: 8443172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-range effects on the retinal chromophore of bacteriorhodopsin caused by surface carboxyl group modification.
    Renthal R; McMillan K; Guerra L; Garcia MN; Rangel R; Jen CM
    Biochemistry; 1995 Jun; 34(24):7869-78. PubMed ID: 7794898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface.
    Dioumaev AK; Richter HT; Brown LS; Tanio M; Tuzi S; Saito H; Kimura Y; Needleman R; Lanyi JK
    Biochemistry; 1998 Feb; 37(8):2496-506. PubMed ID: 9485398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Between the ground- and M-state of bacteriorhodopsin the retinal transition dipole moment tilts out of the plane of the membrane by only 3 degrees.
    Otto H; Heyn MP
    FEBS Lett; 1991 Nov; 293(1-2):111-4. PubMed ID: 1959640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The uncoupling of bacteriorhodopsin by high temperature and anaesthetics.
    Gao MM; Boucher F
    Toxicol Lett; 1998 Nov; 100-101():393-6. PubMed ID: 10049170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulation analysis of the retinal conformational equilibrium in dark-adapted bacteriorhodopsin.
    Baudry J; Crouzy S; Roux B; Smith JC
    Biophys J; 1999 Apr; 76(4):1909-17. PubMed ID: 10096888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of the native lipids and lattice structure in bacteriorhodopsin protein conformation and stability as studied by temperature-dependent Fourier transform-infrared spectroscopy.
    Heyes CD; El-Sayed MA
    J Biol Chem; 2002 Aug; 277(33):29437-43. PubMed ID: 12058039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin.
    Magyari K; Bálint Z; Simon V; Váró G
    J Photochem Photobiol B; 2006 Nov; 85(2):140-4. PubMed ID: 16904334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fourier transform infrared evidence for Schiff base alteration in the first step of the bacteriorhodopsin photocycle.
    Rothschild KJ; Roepe P; Lugtenburg J; Pardoen JA
    Biochemistry; 1984 Dec; 23(25):6103-9. PubMed ID: 6525348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin.
    Kandori H; Shimono K; Sudo Y; Iwamoto M; Shichida Y; Kamo N
    Biochemistry; 2001 Aug; 40(31):9238-46. PubMed ID: 11478891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal stability of bovine-brain myelin membrane.
    Ruiz-Sanz J; Ruiz-Cabello J; Lopez-Mayorga O; Cortijo M; Mateo PL
    Eur Biophys J; 1992; 21(3):169-78. PubMed ID: 1425472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle.
    Balashov SP; Govindjee R; Kono M; Imasheva E; Lukashev E; Ebrey TG; Crouch RK; Menick DR; Feng Y
    Biochemistry; 1993 Oct; 32(39):10331-43. PubMed ID: 8399176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature.
    Yokoyama Y; Sonoyama M; Mitaku S
    Proteins; 2004 Feb; 54(3):442-54. PubMed ID: 14747993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystallinity of purple membranes comprising the chloride-pumping bacteriorhodopsin variant D85T and its modulation by pH and salinity.
    Rhinow D; Chizhik I; Baumann RP; Noll F; Hampp N
    J Phys Chem B; 2010 Nov; 114(46):15424-8. PubMed ID: 21033713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fourier transform infrared analysis of bacteriorhodopsin secondary structure.
    Cladera J; Sabés M; Padrós E
    Biochemistry; 1992 Dec; 31(49):12363-8. PubMed ID: 1463723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid-protein interactions in the purple membrane: structural specificity within the hydrophobic domain.
    Pomerleau V; Harvey-Girard E; Boucher F
    Biochim Biophys Acta; 1995 Mar; 1234(2):221-4. PubMed ID: 7696297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.