These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 1633817)
1. O-glycosylation and stability. Unfolding of glucoamylase induced by heat and guanidine hydrochloride. Williamson G; Belshaw NJ; Noel TR; Ring SG; Williamson MP Eur J Biochem; 1992 Jul; 207(2):661-70. PubMed ID: 1633817 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamics of reversible and irreversible unfolding and domain interactions of glucoamylase from Aspergillus niger studied by differential scanning and isothermal titration calorimetry. Christensen T; Svensson B; Sigurskjold BW Biochemistry; 1999 May; 38(19):6300-10. PubMed ID: 10320360 [TBL] [Abstract][Full Text] [Related]
3. O-glycosylation in Aspergillus glucoamylase. Conformation and role in binding. Williamson G; Belshaw NJ; Williamson MP Biochem J; 1992 Mar; 282 ( Pt 2)(Pt 2):423-8. PubMed ID: 1546955 [TBL] [Abstract][Full Text] [Related]
4. Thermal unfolding of the starch binding domain of Aspergillus niger glucoamylase. Tanaka A; Karita S; Kosuge Y; Senoo K; Obata H; Kitamoto N Biosci Biotechnol Biochem; 1998 Nov; 62(11):2127-32. PubMed ID: 9972233 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamics of binding of heterobidentate ligands consisting of spacer-connected acarbose and beta-cyclodextrin to the catalytic and starch-binding domains of glucoamylase from Aspergillus niger shows that the catalytic and starch-binding sites are in close proximity in space. Sigurskjold BW; Christensen T; Payre N; Cottaz S; Driguez H; Svensson B Biochemistry; 1998 Jul; 37(29):10446-52. PubMed ID: 9671514 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic effects of disulfide bond on thermal unfolding of the starch-binding domain of Aspergillus niger glucoamylase. Sugimoto H; Nakaura M; Kosuge Y; Imai K; Miyake H; Karita S; Tanaka A Biosci Biotechnol Biochem; 2007 Jun; 71(6):1535-41. PubMed ID: 17587686 [TBL] [Abstract][Full Text] [Related]
7. Differential scanning calorimetric studies on the domain structure of Aspergillus glucoamylase. Tanaka A; Fukada H; Takahashi K J Biochem; 1995 May; 117(5):1024-8. PubMed ID: 8586614 [TBL] [Abstract][Full Text] [Related]
8. Small angle X-ray studies reveal that Aspergillus niger glucoamylase has a defined extended conformation and can form dimers in solution. Jørgensen AD; Nøhr J; Kastrup JS; Gajhede M; Sigurskjold BW; Sauer J; Svergun DI; Svensson B; Vestergaard B J Biol Chem; 2008 May; 283(21):14772-80. PubMed ID: 18378674 [TBL] [Abstract][Full Text] [Related]
9. Steady-state kinetic and calorimetric studies on the binding of Aspergillus niger glucoamylase with gluconolactone, 1-deoxynojirimycin, and beta-cyclodextrin. Tanaka A Biosci Biotechnol Biochem; 1996 Dec; 60(12):2055-8. PubMed ID: 8988638 [TBL] [Abstract][Full Text] [Related]
10. Physicochemical characterisation of the two active site mutants Trp(52)-->Phe and Asp(55)-->Val of glucoamylase from Aspergillus niger. Christensen T; Frandsen TP; Kaarsholm NC; Svensson B; Sigurskjold BW Biochim Biophys Acta; 2002 Dec; 1601(2):163-71. PubMed ID: 12445478 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamics of ligand binding to the starch-binding domain of glucoamylase from Aspergillus niger. Sigurskjold BW; Svensson B; Williamson G; Driguez H Eur J Biochem; 1994 Oct; 225(1):133-41. PubMed ID: 7925430 [TBL] [Abstract][Full Text] [Related]
12. Expression in Aspergillus niger of the starch-binding domain of glucoamylase. Comparison with the proteolytically produced starch-binding domain. Le Gal-Coëffet MF; Jacks AJ; Sorimachi K; Williamson MP; Williamson G; Archer DB Eur J Biochem; 1995 Oct; 233(2):561-7. PubMed ID: 7588802 [TBL] [Abstract][Full Text] [Related]
13. Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Sorimachi K; Le Gal-Coëffet MF; Williamson G; Archer DB; Williamson MP Structure; 1997 May; 5(5):647-61. PubMed ID: 9195884 [TBL] [Abstract][Full Text] [Related]
14. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger. Sauer J; Christensen T; Frandsen TP; Mirgorodskaya E; McGuire KA; Driguez H; Roepstorff P; Sigurskjold BW; Svensson B Biochemistry; 2001 Aug; 40(31):9336-46. PubMed ID: 11478902 [TBL] [Abstract][Full Text] [Related]
15. Influence of the carbohydrate moiety on the stability of glycoproteins. Wang C; Eufemi M; Turano C; Giartosio A Biochemistry; 1996 Jun; 35(23):7299-307. PubMed ID: 8652506 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulations of the unfolding of the starch binding domain from Aspergillus niger glucoamylase. Liu HL; Wang WC J Biomol Struct Dyn; 2003 Apr; 20(5):615-22. PubMed ID: 12643764 [TBL] [Abstract][Full Text] [Related]
17. Molecular dynamics simulations of the unfolding mechanism of the catalytic domain from Aspergillus awamori var. X100 glucoamylase. Liu HL; Wang WC; Hsu CM J Biomol Struct Dyn; 2003 Feb; 20(4):567-74. PubMed ID: 12529155 [TBL] [Abstract][Full Text] [Related]
18. Function of conserved tryptophans in the Aspergillus niger glucoamylase 1 starch binding domain. Williamson MP; Le Gal-Coëffet MF; Sorimachi K; Furniss CS; Archer DB; Williamson G Biochemistry; 1997 Jun; 36(24):7535-9. PubMed ID: 9200704 [TBL] [Abstract][Full Text] [Related]
19. 1H and 15N assignments and secondary structure of the starch-binding domain of glucoamylase from Aspergillus niger. Jacks AJ; Sorimachi K; Le Gal-Coëffet MF; Williamson G; Archer DB; Williamson MP Eur J Biochem; 1995 Oct; 233(2):568-78. PubMed ID: 7588803 [TBL] [Abstract][Full Text] [Related]
20. Interaction of beta-cyclodextrin with the granular starch binding domain of glucoamylase. Belshaw NJ; Williamson G Biochim Biophys Acta; 1991 May; 1078(1):117-20. PubMed ID: 2049377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]