BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 16338185)

  • 1. Thermostable DNA polymerases can perform translesion synthesis using 8-oxoguanine and tetrahydrofuran-containing DNA templates.
    Belousova EA; Rechkunova NI; Lavrik OI
    Biochim Biophys Acta; 2006 Jan; 1764(1):97-104. PubMed ID: 16338185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA polymerases beta and lambda as potential participants of TLS during genomic DNA replication on the lagging strand.
    Shtygasheva AA; Belousova EA; Rechkunova NI; Lebedeva NA; Lavrik OI
    Biochemistry (Mosc); 2008 Nov; 73(11):1207-13. PubMed ID: 19120024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Ribonucleotide Backbone on Translesion Synthesis and Repair of 7,8-Dihydro-8-oxoguanine.
    Sassa A; Çağlayan M; Rodriguez Y; Beard WA; Wilson SH; Nohmi T; Honma M; Yasui M
    J Biol Chem; 2016 Nov; 291(46):24314-24323. PubMed ID: 27660390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide incorporation against 7,8-dihydro-8-oxoguanine is influenced by neighboring base sequences in TLS DNA polymerase reaction.
    Yung C; Suzuki T; Okugawa Y; Kawakami A; Loakes D; Negishi K; Negishi T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):49-50. PubMed ID: 18029580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of a non-standard base pair by thermostable DNA polymerases.
    Lutz MJ; Horlacher J; Benner SA
    Bioorg Med Chem Lett; 1998 May; 8(10):1149-52. PubMed ID: 9871725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine.
    Duarte V; Muller JG; Burrows CJ
    Nucleic Acids Res; 1999 Jan; 27(2):496-502. PubMed ID: 9862971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermostable DNA polymerase from Thermus thermophilus B35: influence of divalent metal ions on the interaction with deoxynucleoside triphosphates.
    Rechkunova NI; Okhapkina SS; Anarbaev RO; Lokhova IA; Degtyarev SK; Lavrik OI
    Biochemistry (Mosc); 2000 May; 65(5):609-14. PubMed ID: 10851040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese substantially alters the dynamics of translesion DNA synthesis.
    Hays H; Berdis AJ
    Biochemistry; 2002 Apr; 41(15):4771-8. PubMed ID: 11939771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA template-dependent 5' nuclease activity of Thermus aquaticus and Thermus thermophilus DNA polymerases.
    Ma WP; Kaiser MW; Lyamicheva N; Schaefer JJ; Allawi HT; Takova T; Neri BP; Lyamichev VI
    J Biol Chem; 2000 Aug; 275(32):24693-700. PubMed ID: 10827184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro effects of a C4'-oxidized abasic site on DNA polymerases.
    Greenberg MM; Weledji YN; Kroeger KM; Kim J; Goodman MF
    Biochemistry; 2004 Mar; 43(9):2656-63. PubMed ID: 14992603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency, specificity and DNA polymerase-dependence of translesion replication across the oxidative DNA lesion 8-oxoguanine in human cells.
    Avkin S; Livneh Z
    Mutat Res; 2002 Dec; 510(1-2):81-90. PubMed ID: 12459445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning from directed evolution: Thermus aquaticus DNA polymerase mutants with translesion synthesis activity.
    Obeid S; Schnur A; Gloeckner C; Blatter N; Welte W; Diederichs K; Marx A
    Chembiochem; 2011 Jul; 12(10):1574-80. PubMed ID: 21480455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capacity of nine thermostable DNA polymerases To mediate DNA amplification in the presence of PCR-inhibiting samples.
    Abu Al-Soud W; Râdström P
    Appl Environ Microbiol; 1998 Oct; 64(10):3748-53. PubMed ID: 9758794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human DNA polymerases lambda and beta show different efficiencies of translesion DNA synthesis past abasic sites and alternative mechanisms for frameshift generation.
    Blanca G; Villani G; Shevelev I; Ramadan K; Spadari S; Hübscher U; Maga G
    Biochemistry; 2004 Sep; 43(36):11605-15. PubMed ID: 15350147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity of primer extension products in asymmetric PCR is due both to cleavage by a structure-specific exo/endonuclease activity of DNA polymerases and to premature stops.
    Tombline G; Bellizzi D; Sgaramella V
    Proc Natl Acad Sci U S A; 1996 Apr; 93(7):2724-8. PubMed ID: 8610108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermostable DNA polymerase from Thermus thermophilus B35: cloning, sequence analysis, and gene expression.
    Akishev AG; Rechkunova NI; Lebedeva NA; Lavrik OI; Degtyarev SK
    Biochemistry (Mosc); 1999 Nov; 64(11):1298-304. PubMed ID: 10611536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error-prone and inefficient replication across 8-hydroxyguanine (8-oxoguanine) in human and mouse ras gene fragments by DNA polymerase kappa.
    Jałoszyński P; Ohashi E; Ohmori H; Nishimura S
    Genes Cells; 2005 Jun; 10(6):543-50. PubMed ID: 15938713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Domain exchange: chimeras of Thermus aquaticus DNA polymerase, Escherichia coli DNA polymerase I and Thermotoga neapolitana DNA polymerase.
    Villbrandt B; Sobek H; Frey B; Schomburg D
    Protein Eng; 2000 Sep; 13(9):645-54. PubMed ID: 11054459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translesion synthesis of abasic sites by yeast DNA polymerase epsilon.
    Sabouri N; Johansson E
    J Biol Chem; 2009 Nov; 284(46):31555-63. PubMed ID: 19776424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenylalanine 171 is a molecular brake for translesion synthesis across benzo[a]pyrene-guanine adducts by human DNA polymerase kappa.
    Sassa A; Niimi N; Fujimoto H; Katafuchi A; Grúz P; Yasui M; Gupta RC; Johnson F; Ohta T; Nohmi T
    Mutat Res; 2011 Jan; 718(1-2):10-7. PubMed ID: 21078407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.