These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1633841)

  • 1. Different sequence environments of cysteines and half cystines in proteins. Application to predict disulfide forming residues.
    Fiser A; Cserzö M; Tüdös E; Simon I
    FEBS Lett; 1992 May; 302(2):117-20. PubMed ID: 1633841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid function relates to its embedded protein microenvironment: A study on disulfide-bridged cystine.
    Bhatnagar A; Apostol MI; Bandyopadhyay D
    Proteins; 2016 Nov; 84(11):1576-1589. PubMed ID: 27410223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid neighbours and detailed conformational analysis of cysteines in proteins.
    Petersen MT; Jonson PH; Petersen SB
    Protein Eng; 1999 Jul; 12(7):535-48. PubMed ID: 10436079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Location of cysteine and cystine residues in S-ribonucleases associated with gametophytic self-incompatibility.
    Ishimizu T; Norioka S; Kanai M; Clarke AE; Sakiyama F
    Eur J Biochem; 1996 Dec; 242(3):627-35. PubMed ID: 9022690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The carboxyl-terminal 90 residues of porcine submaxillary mucin are sufficient for forming disulfide-bonded dimers.
    Perez-Vilar J; Hill RL
    J Biol Chem; 1998 Mar; 273(12):6982-8. PubMed ID: 9507005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification.
    Ferrè F; Clote P
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W182-5. PubMed ID: 16844987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disulfide bond acquisition through eukaryotic protein evolution.
    Wong JW; Ho SY; Hogg PJ
    Mol Biol Evol; 2011 Jan; 28(1):327-34. PubMed ID: 20675408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated data interpretation based on the concept of "negative signature mass" for mass-mapping disulfide structures of cystinyl proteins.
    Qi J; Wu W; Borges CR; Hang D; Rupp M; Torng E; Watson JT
    J Am Soc Mass Spectrom; 2003 Sep; 14(9):1032-8. PubMed ID: 12954171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of cystine plus cysteine in proteins by the disulfide interchange reaction.
    GLAZER AN; SMITH EL
    J Biol Chem; 1961 Feb; 236():416-21. PubMed ID: 13705989
    [No Abstract]   [Full Text] [Related]  

  • 10. Analysis of 13Calpha and 13Cbeta chemical shifts of cysteine and cystine residues in proteins: a quantum chemical approach.
    Martin OA; Villegas ME; Vila JA; Scheraga HA
    J Biomol NMR; 2010 Mar; 46(3):217-25. PubMed ID: 20091207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of factors that induce cysteine bonding state.
    Karami Z; Abdolmaleki P; Rezaei MA; Jahandideh S; Asadabadi EB
    Comput Biol Med; 2009 Apr; 39(4):332-9. PubMed ID: 19246035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the cysteine and cystine content of proteins by amino acid analysis: application to the characterization of disulfide-coupled folding intermediates.
    Thannhauser TW; Sherwood RW; Scheraga HA
    J Protein Chem; 1998 Jan; 17(1):37-43. PubMed ID: 9491926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential comparison of peptides containing half-cystine residues from ovalbumins of six avian species.
    Sun Y; Hayakawa S
    Biosci Biotechnol Biochem; 2001 Dec; 65(12):2589-96. PubMed ID: 11826952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of disulfide connectivity from protein sequences.
    Chen YC; Hwang JK
    Proteins; 2005 Nov; 61(3):507-12. PubMed ID: 16170781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights into the amino-terminus of the secretin receptor: I. Status of cysteine and cystine residues.
    Asmann YW; Dong M; Ganguli S; Hadac EM; Miller LJ
    Mol Pharmacol; 2000 Nov; 58(5):911-9. PubMed ID: 11040037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradative covalent reactions important to protein stability.
    Volkin DB; Mach H; Middaugh CR
    Mol Biotechnol; 1997 Oct; 8(2):105-22. PubMed ID: 9406181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Juxtaposed half-cystines as disulphide bridged partners in protein tertiary structure.
    Guruprasad K; Kartik VJ; Lavanya T; Guruprasad L
    Protein Pept Lett; 2006; 13(6):577-9. PubMed ID: 16842112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequences.
    Chen YC; Lin YS; Lin CJ; Hwang JK
    Proteins; 2004 Jun; 55(4):1036-42. PubMed ID: 15146500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics in the pre-steady state of the formation of cystines in ribonucleoside diphosphate reductase: evidence for an asymmetric complex.
    Erickson HK
    Biochemistry; 2001 Aug; 40(32):9631-7. PubMed ID: 11583163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the disulfide bonding state of cysteines using protein descriptors.
    Mucchielli-Giorgi MH; Hazout S; Tufféry P
    Proteins; 2002 Feb; 46(3):243-9. PubMed ID: 11835499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.