These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 1633850)

  • 41. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins.
    Wright HT
    Crit Rev Biochem Mol Biol; 1991; 26(1):1-52. PubMed ID: 1678690
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification, cDNA cloning and possible roles of seed-specific rice asparaginyl endopeptidase, REP-2.
    Kato H; Sutoh K; Minamikawa T
    Planta; 2003 Aug; 217(4):676-85. PubMed ID: 12684786
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm.
    Peng M; Gao M; Båga M; Hucl P; Chibbar RN
    Plant Physiol; 2000 Sep; 124(1):265-72. PubMed ID: 10982441
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolution and Distribution of Hydrolytic Enzyme Activities during Preharvest Sprouting of Wheat (Triticum aestivum) in the Field.
    Olaerts H; Roye C; Derde LJ; Sinnaeve G; Meza WR; Bodson B; Courtin CM
    J Agric Food Chem; 2016 Jul; 64(28):5644-52. PubMed ID: 27341479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distinct expression and function of carotenoid metabolic genes and homoeologs in developing wheat grains.
    Qin X; Fischer K; Yu S; Dubcovsky J; Tian L
    BMC Plant Biol; 2016 Jul; 16(1):155. PubMed ID: 27405473
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling.
    Yang J; Zhang J; Wang Z; Xu G; Zhu Q
    Plant Physiol; 2004 Jul; 135(3):1621-9. PubMed ID: 15235118
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural basis for dual specificity of yeast N-terminal amidase in the N-end rule pathway.
    Kim MK; Oh SJ; Lee BG; Song HK
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12438-12443. PubMed ID: 27791147
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deamidation of glutaminyl and asparaginyl residues in peptides and proteins.
    Robinson AB; Rudd CJ
    Curr Top Cell Regul; 1974; 8(0):247-95. PubMed ID: 4371091
    [No Abstract]   [Full Text] [Related]  

  • 49. Structural analysis of xylanase inhibitor protein I (XIP-I), a proteinaceous xylanase inhibitor from wheat (Triticum aestivum, var. Soisson).
    Payan F; Flatman R; Porciero S; Williamson G; Juge N; Roussel A
    Biochem J; 2003 Jun; 372(Pt 2):399-405. PubMed ID: 12617724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Partial purification and characterisation of cysteine protease in wheat germ.
    Yang R; Song J; Gu Z; Li C
    J Sci Food Agric; 2011 Oct; 91(13):2437-42. PubMed ID: 21702054
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNases and nucleases in embryos and endosperms from naturally aged wheat seeds stored in different conditions.
    Spanò C; Buselli R; Ruffini Castiglione M; Bottega S; Grilli I
    J Plant Physiol; 2007 Apr; 164(4):487-95. PubMed ID: 16876909
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new class of enzyme acting on damaged ribosomes: ribosomal RNA apurinic site specific lyase found in wheat germ.
    Ogasawara T; Sawasaki T; Morishita R; Ozawa A; Madin K; Endo Y
    EMBO J; 1999 Nov; 18(22):6522-31. PubMed ID: 10562564
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Molecular and catalytic properties of bacterial glutamin-(asparagin-)ase].
    Lebedeva ZI; Berezov TT
    Vestn Ross Akad Med Nauk; 1995; (2):57-61. PubMed ID: 7756933
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel Ta.AGP.S.1b transcript in Chinese common wheat (Triticum aestivum L.).
    Kang GZ; Zheng BB; Shen BQ; Peng HF; Guo TC
    C R Biol; 2010 Oct; 333(10):716-24. PubMed ID: 20965441
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Induced triglyceride metabolism in germinating wheat grains.
    Tavener RJ; Laidman DL
    Biochem J; 1968 Sep; 109(2):9P. PubMed ID: 5679388
    [No Abstract]   [Full Text] [Related]  

  • 56. Controlled deamidation of peptides and proteins: an experimental hazard and a possible biological timer.
    Robinson AB; McKerrow JH; Cary P
    Proc Natl Acad Sci U S A; 1970 Jul; 66(3):753-7. PubMed ID: 5269237
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CNF1-like deamidase domains: common Lego bricks among cancer-promoting immunomodulatory bacterial virulence factors.
    Ho M; Mettouchi A; Wilson BA; Lemichez E
    Pathog Dis; 2018 Jul; 76(5):. PubMed ID: 29733372
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of different depth of grain colour on antioxidant capacity during water imbibition in wheat (Triticum aestivum L.).
    Shin OH; Kim DY; Seo YW
    J Sci Food Agric; 2017 Jul; 97(9):2750-2758. PubMed ID: 27753094
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isolation and properties of a metalloproteinase from buckwheat (Fagopyrum esculentum) seeds.
    Belozersky MA; Dunaevsky YE; Voskoboynikova NE
    Biochem J; 1990 Dec; 272(3):677-82. PubMed ID: 2268295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Photosensitized oxidation of asparagine-glutamine deamidase from Pseudomonas fluorescens].
    Kozlov EA; Tsvetkova TA; Grebenshchikova OG
    Biull Eksp Biol Med; 1982 Sep; 94(9):41-2. PubMed ID: 6816314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.