These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 16339023)

  • 1. Bidirectional activity-dependent plasticity at corticostriatal synapses.
    Fino E; Glowinski J; Venance L
    J Neurosci; 2005 Dec; 25(49):11279-87. PubMed ID: 16339023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric spike-timing dependent plasticity of striatal nitric oxide-synthase interneurons.
    Fino E; Paille V; Deniau JM; Venance L
    Neuroscience; 2009 Jun; 160(4):744-54. PubMed ID: 19303912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices.
    Fino E; Deniau JM; Venance L
    J Physiol; 2008 Jan; 586(1):265-82. PubMed ID: 17974593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bi-directional changes in synaptic plasticity induced at corticostriatal synapses in vitro.
    Spencer JP; Murphy KP
    Exp Brain Res; 2000 Dec; 135(4):497-503. PubMed ID: 11156313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.
    Pawlak V; Kerr JN
    J Neurosci; 2008 Mar; 28(10):2435-46. PubMed ID: 18322089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity.
    Centonze D; Grande C; Saulle E; Martin AB; Gubellini P; Pavón N; Pisani A; Bernardi G; Moratalla R; Calabresi P
    J Neurosci; 2003 Sep; 23(24):8506-12. PubMed ID: 13679419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astrocyte Signaling Gates Long-Term Depression at Corticostriatal Synapses of the Direct Pathway.
    Cavaccini A; Durkee C; Kofuji P; Tonini R; Araque A
    J Neurosci; 2020 Jul; 40(30):5757-5768. PubMed ID: 32541069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental control of spike-timing-dependent plasticity by tonic GABAergic signaling in striatum.
    Valtcheva S; Paillé V; Dembitskaya Y; Perez S; Gangarossa G; Fino E; Venance L
    Neuropharmacology; 2017 Jul; 121():261-277. PubMed ID: 28408325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-dependent plasticity of the corticostriatal pathway.
    Stoetzner CR; Pettibone JR; Berke JD
    Neuroscience; 2010 Feb; 165(4):1013-8. PubMed ID: 19932155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term plasticity of corticostriatal synapses is modulated by pathway-specific co-release of opioids through κ-opioid receptors.
    Hawes SL; Salinas AG; Lovinger DM; Blackwell KT
    J Physiol; 2017 Aug; 595(16):5637-5652. PubMed ID: 28449351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct coincidence detectors govern the corticostriatal spike timing-dependent plasticity.
    Fino E; Paille V; Cui Y; Morera-Herreras T; Deniau JM; Venance L
    J Physiol; 2010 Aug; 588(Pt 16):3045-62. PubMed ID: 20603333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permissive role of interneurons in corticostriatal synaptic plasticity.
    Centonze D; Gubellini P; Bernardi G; Calabresi P
    Brain Res Brain Res Rev; 1999 Dec; 31(1):1-5. PubMed ID: 10611492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine, acetylcholine and nitric oxide systems interact to induce corticostriatal synaptic plasticity.
    Centonze D; Gubellini P; Pisani A; Bernardi G; Calabresi P
    Rev Neurosci; 2003; 14(3):207-16. PubMed ID: 14513864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of LTP/LTD balance in STDP by an activity-dependent feedback mechanism.
    Kubota S; Rubin J; Kitajima T
    Neural Netw; 2009; 22(5-6):527-35. PubMed ID: 19616407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex.
    Charpier S; Mahon S; Deniau JM
    Neuroscience; 1999; 91(4):1209-22. PubMed ID: 10391430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate-triggered events inducing corticostriatal long-term depression.
    Calabresi P; Centonze D; Gubellini P; Marfia GA; Bernardi G
    J Neurosci; 1999 Jul; 19(14):6102-10. PubMed ID: 10407046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiking neurons, dopamine, and plasticity: timing is everything, but concentration also matters.
    Thivierge JP; Rivest F; Monchi O
    Synapse; 2007 Jun; 61(6):375-90. PubMed ID: 17372980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine-mediated regulation of corticostriatal synaptic plasticity.
    Calabresi P; Picconi B; Tozzi A; Di Filippo M
    Trends Neurosci; 2007 May; 30(5):211-9. PubMed ID: 17367873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity.
    Cui Y; Paillé V; Xu H; Genet S; Delord B; Fino E; Berry H; Venance L
    J Physiol; 2015 Jul; 593(13):2833-49. PubMed ID: 25873197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitation of corticostriatal plasticity by the amygdala requires Ca2+-induced Ca2+ release in the ventral striatum.
    Popescu AT; Saghyan AA; Nagy FZ; Paré D
    J Neurophysiol; 2010 Sep; 104(3):1673-80. PubMed ID: 20554836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.