These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 16339113)
1. LDL receptor deficiency or apoE mutations prevent remnant clearance and induce hypertriglyceridemia in mice. Kypreos KE; Zannis VI J Lipid Res; 2006 Mar; 47(3):521-9. PubMed ID: 16339113 [TBL] [Abstract][Full Text] [Related]
2. Molecular mechanisms of type III hyperlipoproteinemia: The contribution of the carboxy-terminal domain of ApoE can account for the dyslipidemia that is associated with the E2/E2 phenotype. Kypreos KE; Li X; van Dijk KW; Havekes LM; Zannis VI Biochemistry; 2003 Aug; 42(33):9841-53. PubMed ID: 12924933 [TBL] [Abstract][Full Text] [Related]
3. In LDL receptor-deficient mice, catabolism of remnant lipoproteins requires a high level of apoE but is inhibited by excess apoE. van Dijk KW; van Vlijmen BJ; van't Hof HB; van der Zee A; Santamarina-Fojo S; van Berkel TJ; Havekes LM; Hofker MH J Lipid Res; 1999 Feb; 40(2):336-44. PubMed ID: 9925664 [TBL] [Abstract][Full Text] [Related]
4. Domains of apolipoprotein E contributing to triglyceride and cholesterol homeostasis in vivo. Carboxyl-terminal region 203-299 promotes hepatic very low density lipoprotein-triglyceride secretion. Kypreos KE; van Dijk KW; van Der Zee A; Havekes LM; Zannis VI J Biol Chem; 2001 Jun; 276(23):19778-86. PubMed ID: 11279066 [TBL] [Abstract][Full Text] [Related]
5. Hyperlipidemia of ApoE2(Arg(158)-Cys) and ApoE3-Leiden transgenic mice is modulated predominantly by LDL receptor expression. van Dijk KW; van Vlijmen BJ; de Winther MP; van 't Hof B; van der Zee A; van der Boom H; Havekes LM; Hofker MH Arterioscler Thromb Vasc Biol; 1999 Dec; 19(12):2945-51. PubMed ID: 10591674 [TBL] [Abstract][Full Text] [Related]
6. The amino-terminal 1-185 domain of apoE promotes the clearance of lipoprotein remnants in vivo. The carboxy-terminal domain is required for induction of hyperlipidemia in normal and apoE-deficient mice. Kypreos KE; Morani P; van Dijk KW; Havekes LM; Zannis VI Biochemistry; 2001 May; 40(20):6027-35. PubMed ID: 11352738 [TBL] [Abstract][Full Text] [Related]
7. Generation of a recombinant apolipoprotein E variant with improved biological functions: hydrophobic residues (LEU-261, TRP-264, PHE-265, LEU-268, VAL-269) of apoE can account for the apoE-induced hypertriglyceridemia. Kypreos KE; van Dijk KW; Havekes LM; Zannis VI J Biol Chem; 2005 Feb; 280(8):6276-84. PubMed ID: 15576362 [TBL] [Abstract][Full Text] [Related]
8. Residues Leu261, Trp264, and Phe265 account for apolipoprotein E-induced dyslipidemia and affect the formation of apolipoprotein E-containing high-density lipoprotein. Drosatos K; Kypreos KE; Zannis VI Biochemistry; 2007 Aug; 46(33):9645-53. PubMed ID: 17655277 [TBL] [Abstract][Full Text] [Related]
9. Structural peculiarities of the binding of very low density lipoproteins and low density lipoproteins to the LDL receptor in hypertriglyceridemia: role of apolipoprotein E. Dergunov AD; Smirnova EA; Merched A; Visvikis S; Siest G; Yakushkin VV; Tsibulsky V Biochim Biophys Acta; 2000 Feb; 1484(1):29-40. PubMed ID: 10685028 [TBL] [Abstract][Full Text] [Related]
10. Apolipoprotein CI causes hypertriglyceridemia independent of the very-low-density lipoprotein receptor and apolipoprotein CIII in mice. van der Hoogt CC; Berbée JF; Espirito Santo SM; Gerritsen G; Krom YD; van der Zee A; Havekes LM; van Dijk KW; Rensen PC Biochim Biophys Acta; 2006 Feb; 1761(2):213-20. PubMed ID: 16478678 [TBL] [Abstract][Full Text] [Related]
11. The two-receptor model of lipoprotein clearance: tests of the hypothesis in "knockout" mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Ishibashi S; Herz J; Maeda N; Goldstein JL; Brown MS Proc Natl Acad Sci U S A; 1994 May; 91(10):4431-5. PubMed ID: 8183926 [TBL] [Abstract][Full Text] [Related]
12. Adenovirus-mediated gene transfer of human lipoprotein lipase ameliorates the hyperlipidemias associated with apolipoprotein E and LDL receptor deficiencies in mice. Zsigmond E; Kobayashi K; Tzung KW; Li L; Fuke Y; Chan L Hum Gene Ther; 1997 Nov; 8(16):1921-33. PubMed ID: 9382958 [TBL] [Abstract][Full Text] [Related]
13. Defective VLDL metabolism and severe atherosclerosis in mice expressing human apolipoprotein E isoforms but lacking the LDL receptor. Knouff C; Briand O; Lestavel S; Clavey V; Altenburg M; Maeda N Biochim Biophys Acta; 2004 Aug; 1684(1-3):8-17. PubMed ID: 15450205 [TBL] [Abstract][Full Text] [Related]
14. Effects of coexpression of the LDL receptor and apoE on cholesterol metabolism and atherosclerosis in LDL receptor-deficient mice. Kawashiri M; Zhang Y; Usher D; Reilly M; Puré E; Rader DJ J Lipid Res; 2001 Jun; 42(6):943-50. PubMed ID: 11369802 [TBL] [Abstract][Full Text] [Related]
15. Pharmacodynamic and pharmacokinetic analysis of apoE4 [L261A, W264A, F265A, L268A, V269A], a recombinant apolipoprotein E variant with improved biological properties. Lampropoulou A; Zannis VI; Kypreos KE Biochem Pharmacol; 2012 Dec; 84(11):1451-8. PubMed ID: 22985620 [TBL] [Abstract][Full Text] [Related]
16. The composition, structural properties and binding of very-low-density and low-density lipoproteins to the LDL receptor in normo- and hypertriglyceridemia: relation to the apolipoprotein E phenotype. Dergunov AD; Novoselov AV; Visvikis S; Siest G; Yakushkin VV; Tsibulsky V Biol Chem; 2005 May; 386(5):441-52. PubMed ID: 15927888 [TBL] [Abstract][Full Text] [Related]
17. Apolipoprotein E2 (Lys146-->Gln) causes hypertriglyceridemia due to an apolipoprotein E variant-specific inhibition of lipolysis of very low density lipoproteins-triglycerides. de Beer F; van Dijk KW; Jong MC; van Vark LC; van der Zee A; Hofker MH; Fallaux FJ; Hoeben RC; Smelt AH; Havekes LM Arterioscler Thromb Vasc Biol; 2000 Jul; 20(7):1800-6. PubMed ID: 10894820 [TBL] [Abstract][Full Text] [Related]
18. apoE3[K146N/R147W] acts as a dominant negative apoE form that prevents remnant clearance and inhibits the biogenesis of HDL. Fotakis P; Vezeridis A; Dafnis I; Chroni A; Kardassis D; Zannis VI J Lipid Res; 2014 Jul; 55(7):1310-23. PubMed ID: 24776540 [TBL] [Abstract][Full Text] [Related]
19. Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT. Kypreos KE; Zannis VI Biochem J; 2007 Apr; 403(2):359-67. PubMed ID: 17206937 [TBL] [Abstract][Full Text] [Related]
20. Decreased lipoprotein clearance is responsible for increased cholesterol in LDL receptor knockout mice with streptozotocin-induced diabetes. Goldberg IJ; Hu Y; Noh HL; Wei J; Huggins LA; Rackmill MG; Hamai H; Reid BN; Blaner WS; Huang LS Diabetes; 2008 Jun; 57(6):1674-82. PubMed ID: 18346984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]