These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 16339298)
1. NAD(P)H oxidase contributes to the progression of remote hepatic parenchymal injury and endothelial dysfunction, but not microvascular perfusion deficits. Dorman RB; Wunder C; Saba H; Shoemaker JL; MacMillan-Crow LA; Brock RW Am J Physiol Gastrointest Liver Physiol; 2006 May; 290(5):G1025-32. PubMed ID: 16339298 [TBL] [Abstract][Full Text] [Related]
2. Preconditioning protects endothelium by preventing ET-1-induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart. Duda M; Konior A; Klemenska E; Beresewicz A J Mol Cell Cardiol; 2007 Feb; 42(2):400-10. PubMed ID: 17156794 [TBL] [Abstract][Full Text] [Related]
3. Generation of hypochlorite-modified proteins by neutrophils during ischemia-reperfusion injury in rat liver: attenuation by ischemic preconditioning. Hasegawa T; Malle E; Farhood A; Jaeschke H Am J Physiol Gastrointest Liver Physiol; 2005 Oct; 289(4):G760-7. PubMed ID: 15994427 [TBL] [Abstract][Full Text] [Related]
4. NADPH oxidase-derived oxidant stress is critical for neutrophil cytotoxicity during endotoxemia. Gujral JS; Hinson JA; Farhood A; Jaeschke H Am J Physiol Gastrointest Liver Physiol; 2004 Jul; 287(1):G243-52. PubMed ID: 15044177 [TBL] [Abstract][Full Text] [Related]
5. Melatonin treatment against remote organ injury induced by renal ischemia reperfusion injury in diabetes mellitus. Fadillioglu E; Kurcer Z; Parlakpinar H; Iraz M; Gursul C Arch Pharm Res; 2008 Jun; 31(6):705-12. PubMed ID: 18563351 [TBL] [Abstract][Full Text] [Related]
6. Angiotensin II induces endothelial xanthine oxidase activation: role for endothelial dysfunction in patients with coronary disease. Landmesser U; Spiekermann S; Preuss C; Sorrentino S; Fischer D; Manes C; Mueller M; Drexler H Arterioscler Thromb Vasc Biol; 2007 Apr; 27(4):943-8. PubMed ID: 17234726 [TBL] [Abstract][Full Text] [Related]
7. Diannexin, a novel annexin V homodimer, provides prolonged protection against hepatic ischemia-reperfusion injury in mice. Teoh NC; Ito Y; Field J; Bethea NW; Amr D; McCuskey MK; McCuskey RS; Farrell GC; Allison AC Gastroenterology; 2007 Aug; 133(2):632-46. PubMed ID: 17681182 [TBL] [Abstract][Full Text] [Related]
8. Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia: importance of an intracellular oxidant stress. Jaeschke H; Ho YS; Fisher MA; Lawson JA; Farhood A Hepatology; 1999 Feb; 29(2):443-50. PubMed ID: 9918921 [TBL] [Abstract][Full Text] [Related]
9. Ischemia-reperfusion injury of retinal endothelium by cyclooxygenase- and xanthine oxidase-derived superoxide. Rieger JM; Shah AR; Gidday JM Exp Eye Res; 2002 Apr; 74(4):493-501. PubMed ID: 12076093 [TBL] [Abstract][Full Text] [Related]
10. Cerebral microvascular responses to hypercholesterolemia: roles of NADPH oxidase and P-selectin. Ishikawa M; Stokes KY; Zhang JH; Nanda A; Granger DN Circ Res; 2004 Feb; 94(2):239-44. PubMed ID: 14670846 [TBL] [Abstract][Full Text] [Related]
11. Intralobular heterogeneity of oxidative stress and cell death in ischemia-reperfused rat liver. Kato Y; Tanaka J; Koyama K J Surg Res; 2001 Feb; 95(2):99-106. PubMed ID: 11162032 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of cellular injury: potential sources of oxygen free radicals in ischemia/reperfusion. Inauen W; Suzuki M; Granger DN Microcirc Endothelium Lymphatics; 1989; 5(3-5):143-55. PubMed ID: 2700373 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of postischemic vascular dysfunction in skeletal muscle: implications for therapeutic intervention. Carden DL; Korthuis RJ Microcirc Endothelium Lymphatics; 1989; 5(3-5):277-98. PubMed ID: 2700375 [TBL] [Abstract][Full Text] [Related]
14. Gut ischemia mediates lung injury by a xanthine oxidase-dependent neutrophil mechanism. Koike K; Moore FA; Moore EE; Read RA; Carl VS; Banerjee A J Surg Res; 1993 May; 54(5):469-73. PubMed ID: 8395621 [TBL] [Abstract][Full Text] [Related]
15. Divergent functions of CD4+ T lymphocytes in acute liver inflammation and injury after ischemia-reperfusion. Caldwell CC; Okaya T; Martignoni A; Husted T; Schuster R; Lentsch AB Am J Physiol Gastrointest Liver Physiol; 2005 Nov; 289(5):G969-76. PubMed ID: 16002566 [TBL] [Abstract][Full Text] [Related]
16. TNF-alpha contributes to endothelial dysfunction in ischemia/reperfusion injury. Zhang C; Xu X; Potter BJ; Wang W; Kuo L; Michael L; Bagby GJ; Chilian WM Arterioscler Thromb Vasc Biol; 2006 Mar; 26(3):475-80. PubMed ID: 16385082 [TBL] [Abstract][Full Text] [Related]
17. Role of heat shock protein 70 in hepatic ischemia-reperfusion injury in mice. Kuboki S; Schuster R; Blanchard J; Pritts TA; Wong HR; Lentsch AB Am J Physiol Gastrointest Liver Physiol; 2007 Apr; 292(4):G1141-9. PubMed ID: 17185630 [TBL] [Abstract][Full Text] [Related]
18. The role of fracture-associated soft tissue injury in the induction of systemic inflammation and remote organ dysfunction after bilateral femur fracture. Kobbe P; Vodovotz Y; Kaczorowski DJ; Billiar TR; Pape HC J Orthop Trauma; 2008 Jul; 22(6):385-90. PubMed ID: 18594302 [TBL] [Abstract][Full Text] [Related]
19. Propofol attenuates the decrease of dynamic compliance and water content in the lung by decreasing oxidative radicals released from the reperfused liver. Chan KC; Lin CJ; Lee PH; Chen CF; Lai YL; Sun WZ; Cheng YJ Anesth Analg; 2008 Oct; 107(4):1284-9. PubMed ID: 18806041 [TBL] [Abstract][Full Text] [Related]
20. Cytokines contribute to early hepatic parenchymal injury and microvascular dysfunction after bilateral hindlimb ischemia. Lawlor DK; Brock RW; Harris KA; Potter RF J Vasc Surg; 1999 Sep; 30(3):533-41. PubMed ID: 10477647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]