These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 16339878)
21. Gastrin-releasing peptide promotes suprachiasmatic nuclei cellular rhythmicity in the absence of vasoactive intestinal polypeptide-VPAC2 receptor signaling. Brown TM; Hughes AT; Piggins HD J Neurosci; 2005 Nov; 25(48):11155-64. PubMed ID: 16319315 [TBL] [Abstract][Full Text] [Related]
22. Histamine 1 receptor-Gβγ-cAMP/PKA-CFTR pathway mediates the histamine-induced resetting of the suprachiasmatic circadian clock. Kim YS; Kim YB; Kim WB; Lee SW; Oh SB; Han HC; Lee CJ; Colwell CS; Kim YI Mol Brain; 2016 May; 9(1):49. PubMed ID: 27153809 [TBL] [Abstract][Full Text] [Related]
23. Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK. Rawashdeh O; Jilg A; Maronde E; Fahrenkrug J; Stehle JH J Neurochem; 2016 Sep; 138(5):731-45. PubMed ID: 27246400 [TBL] [Abstract][Full Text] [Related]
24. Light-inducible and clock-controlled expression of MAP kinase phosphatase 1 in mouse central pacemaker neurons. Doi M; Cho S; Yujnovsky I; Hirayama J; Cermakian N; Cato AC; Sassone-Corsi P J Biol Rhythms; 2007 Apr; 22(2):127-39. PubMed ID: 17440214 [TBL] [Abstract][Full Text] [Related]
25. Shedding light on circadian clock resetting by dark exposure: differential effects between diurnal and nocturnal rodents. Mendoza J; Revel FG; Pévet P; Challet E Eur J Neurosci; 2007 May; 25(10):3080-90. PubMed ID: 17561821 [TBL] [Abstract][Full Text] [Related]
26. Signaling in the mammalian circadian clock: the NO/cGMP pathway. Golombek DA; Agostino PV; Plano SA; Ferreyra GA Neurochem Int; 2004 Nov; 45(6):929-36. PubMed ID: 15312987 [TBL] [Abstract][Full Text] [Related]
27. DARPP-32 involvement in the photic pathway of the circadian system. Yan L; Bobula JM; Svenningsson P; Greengard P; Silver R J Neurosci; 2006 Sep; 26(37):9434-8. PubMed ID: 16971527 [TBL] [Abstract][Full Text] [Related]
28. Ageing and the diurnal expression of mRNAs for vasoactive intestinal peptide and for the VPAC2 and PAC1 receptors in the suprachiasmatic nucleus of male rats. Kalló I; Kalamatianos T; Piggins HD; Coen CW J Neuroendocrinol; 2004 Sep; 16(9):758-66. PubMed ID: 15344914 [TBL] [Abstract][Full Text] [Related]
29. Circadian PER2::LUC rhythms in the olfactory bulb of freely moving mice depend on the suprachiasmatic nucleus but not on behaviour rhythms. Ono D; Honma S; Honma K Eur J Neurosci; 2015 Dec; 42(12):3128-37. PubMed ID: 26489367 [TBL] [Abstract][Full Text] [Related]
30. Minireview: The circadian clockwork of the suprachiasmatic nuclei--analysis of a cellular oscillator that drives endocrine rhythms. Maywood ES; O'Neill JS; Chesham JE; Hastings MH Endocrinology; 2007 Dec; 148(12):5624-34. PubMed ID: 17901233 [TBL] [Abstract][Full Text] [Related]
31. Non-photic phase shifting of the circadian clock: role of the extracellular signal-responsive kinases I/II/mitogen-activated protein kinase pathway. Antle MC; Tse F; Koke SJ; Sterniczuk R; Hagel K Eur J Neurosci; 2008 Dec; 28(12):2511-8. PubMed ID: 19087176 [TBL] [Abstract][Full Text] [Related]
32. Differentiation of PC12 cells results in enhanced VIP expression and prolonged rhythmic expression of clock genes. Pretzmann CP; Fahrenkrug J; Georg B J Mol Neurosci; 2008 Nov; 36(1-3):132-40. PubMed ID: 18810660 [TBL] [Abstract][Full Text] [Related]
33. Circadian Control of the Female Reproductive Axis Through Gated Responsiveness of the RFRP-3 System to VIP Signaling. Russo KA; La JL; Stephens SB; Poling MC; Padgaonkar NA; Jennings KJ; Piekarski DJ; Kauffman AS; Kriegsfeld LJ Endocrinology; 2015 Jul; 156(7):2608-18. PubMed ID: 25872006 [TBL] [Abstract][Full Text] [Related]
34. Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse. Maywood ES; Drynan L; Chesham JE; Edwards MD; Dardente H; Fustin JM; Hazlerigg DG; O'Neill JS; Codner GF; Smyllie NJ; Brancaccio M; Hastings MH Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9547-52. PubMed ID: 23690615 [TBL] [Abstract][Full Text] [Related]
35. Involvement of calcium-calmodulin protein kinase but not mitogen-activated protein kinase in light-induced phase delays and Per gene expression in the suprachiasmatic nucleus of the hamster. Yokota S; Yamamoto M; Moriya T; Akiyama M; Fukunaga K; Miyamoto E; Shibata S J Neurochem; 2001 Apr; 77(2):618-27. PubMed ID: 11299324 [TBL] [Abstract][Full Text] [Related]
36. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice. Hannibal J; Hsiung HM; Fahrenkrug J Am J Physiol Regul Integr Comp Physiol; 2011 Mar; 300(3):R519-30. PubMed ID: 21178124 [TBL] [Abstract][Full Text] [Related]
37. Phase shifts to light are altered by antagonists to neuropeptide receptors. Chan RK; Sterniczuk R; Enkhbold Y; Jeffers RT; Basu P; Duong B; Chow SL; Smith VM; Antle MC Neuroscience; 2016 Jul; 327():115-24. PubMed ID: 27090819 [TBL] [Abstract][Full Text] [Related]
38. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression. Mendoza JY; Dardente H; Escobar C; Pevet P; Challet E Neuroscience; 2004; 127(2):529-37. PubMed ID: 15262341 [TBL] [Abstract][Full Text] [Related]
39. Entrainment and coupling of the hamster suprachiasmatic clock by daily dark pulses. Mendoza J; Pévet P; Challet E J Neurosci Res; 2009 Feb; 87(3):758-65. PubMed ID: 18831006 [TBL] [Abstract][Full Text] [Related]
40. Phase delays to light and gastrin-releasing peptide require the protein kinase A pathway. Sterniczuk R; Yamakawa GR; Pomeroy T; Antle MC Neurosci Lett; 2014 Jan; 559():24-9. PubMed ID: 24287375 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]