BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16339886)

  • 1. Temperature dependence and thermodynamics of Klenow polymerase binding to primed-template DNA.
    Datta K; Wowor AJ; Richard AJ; LiCata VJ
    Biophys J; 2006 Mar; 90(5):1739-51. PubMed ID: 16339886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enthalpic switch-points and temperature dependencies of DNA binding and nucleotide incorporation by Pol I DNA polymerases.
    Brown HS; Licata VJ
    Biochim Biophys Acta; 2013 Oct; 1834(10):2133-8. PubMed ID: 23851145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of the DNA structural selectivity of the Pol I DNA polymerases from Escherichia coli and Thermus aquaticus.
    Wowor AJ; Datta K; Brown HS; Thompson GS; Ray S; Grove A; LiCata VJ
    Biophys J; 2010 Jun; 98(12):3015-24. PubMed ID: 20550914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How virus size and attachment parameters affect the temperature sensitivity of virus binding to host cells: Predictions of a thermodynamic model for arboviruses and HIV.
    Gale P
    Microb Risk Anal; 2020 Aug; 15():100104. PubMed ID: 32292808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prevalence of temperature-dependent heat capacity changes in protein-DNA interactions.
    Liu CC; Richard AJ; Datta K; LiCata VJ
    Biophys J; 2008 Apr; 94(8):3258-65. PubMed ID: 18199676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stability of Taq DNA polymerase results from a reduced entropic folding penalty; identification of other thermophilic proteins with similar folding thermodynamics.
    Liu CC; LiCata VJ
    Proteins; 2014 May; 82(5):785-93. PubMed ID: 24174290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incoming nucleotide binds to Klenow ternary complex leading to stable physical sequestration of preceding dNTP on DNA.
    Ramanathan S; Chary KV; Rao BJ
    Nucleic Acids Res; 2001 May; 29(10):2097-105. PubMed ID: 11353079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site.
    Moore BM; Jalluri RK; Doughty MB
    Biochemistry; 1996 Sep; 35(36):11642-51. PubMed ID: 8794744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of the binding of Thermus aquaticus DNA polymerase to primed-template DNA.
    Datta K; LiCata VJ
    Nucleic Acids Res; 2003 Oct; 31(19):5590-7. PubMed ID: 14500822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I.
    Carver TE; Millar DP
    Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt dependence of DNA binding by Thermus aquaticus and Escherichia coli DNA polymerases.
    Datta K; LiCata VJ
    J Biol Chem; 2003 Feb; 278(8):5694-701. PubMed ID: 12466277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local conformations and competitive binding affinities of single- and double-stranded primer-template DNA at the polymerization and editing active sites of DNA polymerases.
    Datta K; Johnson NP; LiCata VJ; von Hippel PH
    J Biol Chem; 2009 Jun; 284(25):17180-17193. PubMed ID: 19411253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenine base unstacking dominates the observed enthalpy and heat capacity changes for the Escherichia coli SSB tetramer binding to single-stranded oligoadenylates.
    Kozlov AG; Lohman TM
    Biochemistry; 1999 Jun; 38(22):7388-97. PubMed ID: 10353851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of DNA mismatch recognition within the polymerase domain of the Klenow fragment.
    Thompson EH; Bailey MF; van der Schans EJ; Joyce CM; Millar DP
    Biochemistry; 2002 Jan; 41(3):713-22. PubMed ID: 11790092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase.
    Firestone RS; Cameron SA; Karp JM; Arcus VL; Schramm VL
    ACS Chem Biol; 2017 Feb; 12(2):464-473. PubMed ID: 28026167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presence of 18-A long hydrogen bond track in the active site of Escherichia coli DNA polymerase I (Klenow fragment). Its requirement in the stabilization of enzyme-template-primer complex.
    Singh K; Modak MJ
    J Biol Chem; 2003 Mar; 278(13):11289-302. PubMed ID: 12522214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The energetics of HMG box interactions with DNA: thermodynamics of the DNA binding of the HMG box from mouse sox-5.
    Privalov PL; Jelesarov I; Read CM; Dragan AI; Crane-Robinson C
    J Mol Biol; 1999 Dec; 294(4):997-1013. PubMed ID: 10588902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability.
    Korolev S; Nayal M; Barnes WM; Di Cera E; Waksman G
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9264-8. PubMed ID: 7568114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes.
    Felitsky DJ; Record MT
    Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of the interaction between oxytocin and its myometrial receptor in sheep: a stepwise binding mechanism.
    Pliska V; Folkers G; Spiwok V
    Biochem Pharmacol; 2014 Sep; 91(1):119-27. PubMed ID: 25010721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.